SLC39A6:鋅離子轉(zhuǎn)運(yùn)蛋白,抗體偶聯(lián)藥物ADC新晉靶點(diǎn)!
日期:2022-12-02 15:34:12
近年來,抗體藥物偶聯(lián)物(ADC)新藥交易迎來爆發(fā),更多企業(yè)開始進(jìn)軍ADC領(lǐng)域。據(jù)Pharmsnap數(shù)據(jù)庫顯示,目前ADC新藥交易合作或授權(quán)的項(xiàng)目近100項(xiàng),達(dá)成的交易金額超過400億美元。2022年迄今已達(dá)17項(xiàng),SLC39A6成功上位,成為抗體藥ADC新晉靶點(diǎn)之一。
SLC39A6作為新發(fā)的癌癥相關(guān)因子,雖研究起步較晚,但近年來進(jìn)展很快。早前,制藥巨擘默沙東(Merck)與全球ADC領(lǐng)域的龍頭公司Seagen達(dá)成協(xié)議,支付16億美元收購其靶向SLC39A6/LIV-1的ADC藥物(Ladiratuzumab Vedotin),用于轉(zhuǎn)移性三陰性乳腺癌臨床研究。默沙東還承諾將在研發(fā)的里程碑上投入高達(dá)26億美元。目前,越來越多的研究表明,SLC39A6在多種腫瘤細(xì)胞中高表達(dá),但在正常組織有限表達(dá),成為ADC治療有希望的候選者!今天我們一起來了解一下,抗體藥ADC新晉靶點(diǎn)--鋅轉(zhuǎn)運(yùn)蛋白SLC39A6!
1. 什么是鋅轉(zhuǎn)運(yùn)蛋白家族?
SLC39A家族和SLC30A家族為已發(fā)現(xiàn)的哺乳動(dòng)物中的兩個(gè)鋅轉(zhuǎn)運(yùn)蛋白家族,分別調(diào)節(jié)鋅離子轉(zhuǎn)進(jìn)(influx)和轉(zhuǎn)出(efflux)細(xì)胞的運(yùn)輸過程(圖1) [1, 6]。SLC39A家族(又稱ZIP家族),共有14個(gè)成員,即ZIP1-ZIP14 [2-3]。該家族多個(gè)成員已被證明可促進(jìn)細(xì)胞外或細(xì)胞器內(nèi)的鋅離子轉(zhuǎn)運(yùn)到細(xì)胞質(zhì),具有鋅離子吸收(influx)攝取功能。而SLC30A家族(又稱ZIT家族),共有10個(gè)成員,與SLC39A/ZIP家族的功能相反,多個(gè)家族成員可協(xié)助鋅離子從細(xì)胞質(zhì)內(nèi)流出到細(xì)胞外或流進(jìn)到細(xì)胞器內(nèi),具有釋放(efflux)鋅離子功能 [2-3]。越來越多的證據(jù)表明,鋅轉(zhuǎn)運(yùn)蛋白家族不僅直接參與細(xì)胞的鋅離子穩(wěn)態(tài)代謝,同時(shí)還通過復(fù)雜的機(jī)制影響著腫瘤和代謝疾病的發(fā)生和發(fā)展,其成員逐漸成為鋅營養(yǎng)和代謝疾病的研究熱點(diǎn) [4-5]。
鋅轉(zhuǎn)運(yùn)蛋白的兩大家族成員在各種亞細(xì)胞器、細(xì)胞及器官中的分布不同,如ZIP4/SLC39A4、ZIP5/SLC39A5、ZIP6/SLC39A6、ZIP10、ZIP14以及ZnT1/SLC30A1主要分布在細(xì)胞膜上,而其它眾多的鋅轉(zhuǎn)運(yùn)蛋白主要分布在不同的細(xì)胞器膜上;在組織器官分布方面,ZIP4/SLC39A4和ZnT5分布小腸上皮細(xì)胞,ZIP10和ZnT1分布在腎臟上皮細(xì)胞,ZIP5、ZnT1及ZnT2分布在胰腺腺細(xì)胞,ZIP8及ZIP10分布在血細(xì)胞等等 [4-5]。

圖1. 鋅轉(zhuǎn)運(yùn)蛋白示意圖 [6]
2. 什么是SLC39A6?
SLC39A6(又名ZIP6或LIV-1)屬于鋅轉(zhuǎn)運(yùn)蛋白家族ZIP成員之一。根據(jù)蛋白結(jié)構(gòu)特點(diǎn),哺乳動(dòng)物ZIP蛋白又被分成4個(gè)亞家族,即亞家族I,II,LIV-1和gufA。SLC39A6是LIV-1亞家族,存在755個(gè)氨基酸和433個(gè)氨基酸兩種長度的異構(gòu)體。SLC39A6蛋白包括6-8個(gè)跨膜域,其氨基和羧基末端均位于細(xì)胞外或囊泡內(nèi),第3和4跨膜域間存在富含組氨酸的結(jié)構(gòu)域,該區(qū)域具有結(jié)合鋅離子的功能,并具有金屬蛋白酶活性(圖2) [7]。SLC39A6的主要功能是將鋅離子從細(xì)胞外轉(zhuǎn)移至細(xì)胞內(nèi),并且是酶、轉(zhuǎn)錄因子和信號(hào)分子發(fā)揮作用機(jī)制中的關(guān)鍵蛋白 [8-9]。
SLC39A6的表達(dá)較為廣泛,在胚盤、乳腺及前列腺中表達(dá)最為豐富。SLC39A6蛋白主要定位在細(xì)胞膜上,將鋅離子由胞外運(yùn)至胞漿,或?qū)⒓?xì)胞器內(nèi)的鋅離子轉(zhuǎn)運(yùn)至胞漿。SLC39A6可通過調(diào)節(jié)鋅離子穩(wěn)衡代謝,在機(jī)體免疫反應(yīng)中發(fā)揮重要作用。近年來,諸多關(guān)于SLC39A6的研究表明,SLC39A6在許多癌癥中表達(dá)異常,如食管癌、宮頸癌、肺癌以及乳腺癌等等,提示SLC39A6蛋白在癌癥發(fā)生過程具有重要作用 [10-15]。

圖2. SLC39A6結(jié)構(gòu)示意圖 [7]
3. SLC39A6相關(guān)的調(diào)節(jié)機(jī)制
鋅轉(zhuǎn)運(yùn)體SLC39A6自發(fā)現(xiàn)以來一直受到廣泛關(guān)注,其參與腫瘤相關(guān)的機(jī)制正在深入研究中,如JAK/STAT、PI3K/AKT、EGFR-Ras-ERK、MAPK/ERK等信號(hào)通路。SLC39A6作為腫瘤相關(guān)的潛力分子,SLC39A6在腫瘤發(fā)生過程的分子機(jī)制并不是單一的,其復(fù)雜的作用機(jī)制有待進(jìn)一步闡明。
3.1 SLC39A6與STAT3信號(hào)
信號(hào)轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄激活因子3(STAT3)和鋅指蛋白(Snail)是上皮間質(zhì)轉(zhuǎn)化(EMT)通路的主要標(biāo)志物。SLC39A6被鑒定為STAT3的下游靶基因,促進(jìn)鋅指蛋白Snail的入核。而Snail基因可降低與細(xì)胞黏附有關(guān)的基因表達(dá),在上皮細(xì)胞轉(zhuǎn)化為間質(zhì)細(xì)胞的過程中起重要作用 [16-17]。因此,SLC39A6可通過影響Snail表達(dá),調(diào)節(jié)細(xì)胞分化過程。
另有研究指出,在乳腺癌中,SLC39A6運(yùn)輸鋅離子進(jìn)入細(xì)胞,會(huì)抑制GSK3β的活性,失活的GSK3β不能磷酸化Snail,使得Snail留在核內(nèi)抑制細(xì)胞交聯(lián)基因E-cadherin的轉(zhuǎn)錄,促進(jìn)細(xì)胞遷移 [18]。研究發(fā)現(xiàn),在食管鱗癌中,SLC39A6是STAT3的下游靶基因,SLC39A6通過調(diào)控SNAIL2基因,參與食管鱗癌的EMT過程 [19]。
3.2 SLC39A6與EGFR信號(hào)
EGFR屬于膜受體酪氨酸激酶(receptor tyrosine kinase,RTK)家族,與表皮生長因子EGF、轉(zhuǎn)化生長因子α(TGFα)、肝素結(jié)合EGF樣生長因子(HBEGF)等配體結(jié)合后,可招募其他受體底物蛋白并激活一系列下游信號(hào),如調(diào)控分裂增殖的Ras/MAPK、與癌癥相關(guān)的PI3K/AKT通路等。研究發(fā)現(xiàn),腫瘤微環(huán)境中SLC39A6的表達(dá)會(huì)被例如EGF、IGF-1(insulinlike growth factor)等生長因子所激活 [20]。
在前列腺腫瘤細(xì)胞系中,過表達(dá)SLC39A6后會(huì)引起EGFR磷酸化和ERK磷酸化,其下游信號(hào)可誘導(dǎo)細(xì)胞的遷移和入侵行為 [21]。在食管癌中,過表達(dá)SLC39A6的細(xì)胞,可激活A(yù)KT和ERK通路,調(diào)節(jié)MMP1、MMP3、MYC和SLUG表達(dá)(圖3) [22]。目前,越來越多的研究揭示SLC39A6中可作為重要的癌相關(guān)基因,但SLC39A6在癌癥中具體的作用機(jī)制仍需要進(jìn)一步深入地研究。

圖3. SLC39A6通過激活A(yù)KT和ERK途徑來促進(jìn)ESCC [22]
4. SLC39A6在癌癥治療中的作用
在惡性腫瘤中,體內(nèi)鋅穩(wěn)態(tài)的紊亂與惡性腫瘤的進(jìn)展相關(guān),癌細(xì)胞通常具有上調(diào)的鋅轉(zhuǎn)運(yùn)蛋白和鋅離子。因此,SLC39A6作為鋅的重要轉(zhuǎn)運(yùn)蛋白在惡性腫瘤的進(jìn)展具有重要作用。目前在消化系統(tǒng)腫瘤(如食管癌、肝癌及胰腺癌)、乳腺癌、膠質(zhì)瘤、前列腺癌、肺癌、膀胱癌等中發(fā)現(xiàn)SLC39A6均有異常表達(dá)。
4.1 SLC39A6與食管癌
在食管癌中,SLC39A6表達(dá)下調(diào)可抑制食管癌細(xì)胞的增殖和侵襲。高表達(dá)的SLC39A6與腫瘤侵襲性、細(xì)胞內(nèi)鋅水平和患者生存時(shí)間有關(guān)。進(jìn)一步的分析表明,在SLC39A6表達(dá)上調(diào)的細(xì)胞株中,基質(zhì)金屬蛋白酶 1、基質(zhì)金屬蛋白酶 3、髓細(xì)胞增生原癌基因和表面免疫球蛋白呈現(xiàn)高表達(dá)。陸續(xù)的研究認(rèn)為SLC39A6在食管鱗癌(ESCC)中具有促腫瘤作用,提示SLC39A6可作為高?;颊叩脑缙谔綔y器和預(yù)后的生物標(biāo)志物,因而SLC39A6的靶向治療可能是阻斷ESCC的一種潛在治療策略 [22, 23-24]。
4.2 SLC39A6與肝癌
通過miRNA微陣列分析發(fā)現(xiàn),在發(fā)生轉(zhuǎn)移的肝癌細(xì)胞系MHCC-97L,MHCC-97H和HCC-LM3中,miR-192在肝癌組織中表達(dá)下降,在肝癌患者血管細(xì)胞浸潤組的表達(dá)水平較非浸潤組下降。而SLC39A6是miR-192的直接和功能靶點(diǎn),且SLC39A6與miR-192呈負(fù)相關(guān),所以SLC39A6可能促進(jìn)肝癌細(xì)胞的遷移和侵襲 [25-27]。
4.3 SLC39A6與胰腺癌
有研究揭示,在72例胰腺癌組織中,SLC39A6表達(dá)水平與腫瘤大小及淋巴浸潤有關(guān)。通過下調(diào)SLC39A6表達(dá),構(gòu)建裸鼠模型,體內(nèi)和體外實(shí)驗(yàn)的結(jié)果表明,抑制SLC39A6可抑制胰腺癌細(xì)胞增殖、遷移。由此說明,SLC39A6表達(dá)與胰腺癌腫瘤增殖相關(guān),抑制SLC39A6可顯著減少胰腺癌細(xì)胞轉(zhuǎn)移或擴(kuò)散 [28-29]。
4.4 SLC39A6與乳腺癌
SLC39A6最初在乳腺癌細(xì)胞系中被鑒定為雌激素誘導(dǎo)基因,故認(rèn)為與乳腺癌的發(fā)生和發(fā)展密切相關(guān)。有關(guān)RNAseq分析的結(jié)果顯示,在乳腺癌luminal分型組中,鑒定出SLC39A6、PGR、ESR1、BCL2、GATA3和NAT1在轉(zhuǎn)移的腫瘤中出現(xiàn)下調(diào),提示SLC39A6與乳腺腫瘤的分級(jí)、大小和分期可能有關(guān) [30-32]。目前,靶向SLC39A6的ADC藥物L(fēng)adiratuzumab vedotin(SGN-LIVI1),已在轉(zhuǎn)移性三陰性乳腺癌的臨床研究中與帕博利珠單抗(Keytruda)聯(lián)合使用 [18, 33]。
4.5 SLC39A6與其它腫瘤
此外,其它多種腫瘤中也發(fā)現(xiàn)了SLC39A6異常表達(dá),包括膠質(zhì)瘤、卵巢癌、膀胱癌、前列腺癌、頭頸癌、肺癌、和胃癌 [15, 21, 34-38]。SLC39A6被認(rèn)為處于細(xì)胞質(zhì)膜上,可導(dǎo)致細(xì)胞內(nèi)鋅水平增加,且SLC39A6在對(duì)類固醇激素敏感的組織如胎盤和前列腺中高表達(dá) [1, 21, 39]。在胃癌中,SLC39A6的單核苷酸多態(tài)性rs1050631與手術(shù)切除胃腺瘤的患者預(yù)后相關(guān) [38]。在膠質(zhì)瘤中,SLC39A6高表達(dá),并與級(jí)別呈顯著相關(guān) [34]。在非小細(xì)胞肺癌中,敲低SLC39A6可抑制非小細(xì)胞肺癌細(xì)胞的增殖、侵襲和遷移,并使細(xì)胞停留在G1期 [15, 40]。
5. SLC39A6的臨床應(yīng)用前景
來自Pharmsnap的數(shù)據(jù)顯示,已有1款基于SLC39A6的ADC抗體藥(Ladiratuzumab vedotin)處于臨床2期,用于腺癌、食管癌、乳腺癌等多種腫瘤治療。涉及SLC39A6靶點(diǎn),有11項(xiàng)臨床試驗(yàn)進(jìn)行中,用于非小細(xì)胞肺癌和三陰性乳腺癌等實(shí)體瘤的治療。目前已上市的ADC產(chǎn)品共14款,已進(jìn)入臨床的在研產(chǎn)品主要聚焦在HER2和TROP2,此外FRα、VEGF、CD19、CD22、CD30、EGFR、KAAG1、NaPi2b、c-MET、CLDN18.2、HER3、LIV-1/SLC39A6、Nectin-4、MSLN等靶點(diǎn)也紛紛入局。近年來,ADC賽道競爭白熱化,差異化布局,選擇其他潛力靶點(diǎn)已是眾多ADC研發(fā)的制勝法寶。SLC39A6作為新發(fā)腫瘤相關(guān)分子,新晉ADC靶點(diǎn),有望在食管癌和乳腺癌等癌癥治療方面取得突破。
為鼎力協(xié)助各藥企針對(duì)SLC39A6在食管癌和乳腺癌等其它腫瘤在臨床中的研究,CUSABIO推出SLC39A6活性蛋白產(chǎn)品,(Code:CSB-BP621669HU1),助力您在SLC39A6機(jī)制方面的研究或其潛在臨床價(jià)值的探索。
Recombinant Human SLC39A6, partial (Active) (CSB-BP621669HU1)

The purity was greater than 95% as determined by SDS-PAGE.

Immobilized Human SLC39A6 at 1 μg/ml can bind Anti-SLC39A6 recombinant antibody (CSB-RA621669MA1HU), the EC50 is 0.6873-0.9010 ng/mL.
參考文獻(xiàn):
[1] Prasad, Ram R., et al. "Stage-specific differential expression of zinc transporter SLC30A and SLC39A family proteins during prostate tumorigenesis." Molecular Carcinogenesis 61.5 (2022): 454-471.
[2] Singh, Chandra K., et al. "Role of zinc transporters in prostate cancer and a potential association with racial disparity." Cancer Research 77.13_ Supplement (2017): 4139-4139.
[3] Meng, Jie, et al. "Accumulation of different metals in oyster Crassostrea gigas: significance and specificity of SLC39A (ZIP) and SLC30A (ZnT) gene families and polymorphism variation." Environmental Pollution 276 (2021): 116706.
[4] Nagamatsu, Shino, et al. "Sophisticated expression responses of ZNT1 and MT in response to changes in the expression of ZIPs." Scientific reports 12.1 (2022): 1-13.
[5] Satarug, Soisungwan, et al. "Aberrant expression of ZIP and ZnT zinc transporters in UROtsa cells transformed to malignant cells by cadmium." Stresses 1.2 (2021): 78-89.
[6] Fukada, T., & Kambe, T. (2011). Molecular and genetic features of zinc transporters in physiology and pathogenesis. metallomics: integrated biometal science, 3(7), 662 -674.
[7] Taylor, Kathryn M., and Robert I. Nicholson. "The LZT proteins; the LIV-1 subfamily of zinc transporters. "Biochimica et Biophysica Acta (BBA)- Biomembranes 1611.1-2 (2003): 16-30.
[8] Ghaderi, Hajarossadat, et al. "Preparation of heavy chain polyclonal antibody against zinc transporter SLC39A6 and its diagnostic application." (2021): 274-280.
[9] Ghaderi, Hajarossadat, et al. "Development of camelid monoclonal nanobody against SLC39A6 zinc transporter protein." Iranian Journal of Basic Medical Sciences 24.12 (2021): 1726.
[10] Bagheri, Sajedeh, et al. "Recombinant expression of Zinc transporter SLC39A6 and its functional antibody production." Monoclonal Antibodies in Immunodiagnosis and Immunotherapy 38.2 (2019): 70-74.
[11] Zhao, Lei, et al. "SLC39A6/ZIP6 is essential for zinc homeostasis and T-cell development in zebrafish." biochemical and biophysical research communications 511.4 (2019): 896-902.
[12] Cui, Xiao-Bin, et al. "SLC39A6: a potential target for diagnosis and therapy of esophageal carcinoma." journal of translational medicine 13.1 (2015): 1 -16.
[13] Zhao, Le, Wei Chen, and Xu Li. "Expression of LIV-1 mRNA in human cervical carcinoma and endometrial carcinoma." Nan Fang yi ke da xue xue bao= Journal of Southern Medical University 27.10 (2007): 1590-1592.
[14] Takatani-Nakase, Tomoka, et al. "ZIP6-centered zinc regulatory and malignant characteristics of breast cancer cells." Metallomics Research 2.1 (2022): rev-29.
[15] Wan, Xuechao, et al. "Co-expression analysis revealed PTCH1-3'UTR promoted cell migration and invasion by activating miR-101-3p/SLC39A6 axis in non- small cell lung cancer: implicating the novel function of PTCH1." oncotarget 9.4 (2018): 4798.
[16] Hogstrand, Christer, et al. "A mechanism for epithelial-mesenchymal transition and anoikis resistance in breast cancer triggered by zinc channel ZIP6 and STAT3 (signal transducer and activator of transcription 3)." Biochemical Journal 455.2 (2013): 229-237.
[17] Brethour, Dylan, et al. "A ZIP6-ZIP10 heteromer controls NCAM1 phosphorylation and integration into focal adhesion complexes during epithelial-to-mesenchymal transition." Scientific reports 7.1 (2017): 1-19.
[18] Saravanan, Roshni, et al. "Zinc transporter LIV1: A promising cell surface target for triple negative breast cancer." Journal of Cellular Physiology (2022).
[19] Cheng Xinxin, et al. "The expression of STAT3, SLC39A6 and SNAIL family genes in esophageal squamous cell carcinoma." Proceedings of the National Academic Conference on Tumor Epidemiology and Tumor Etiology. 2015.
[20] Grattan, Bruce J., Kavitha Sankavaram, and Hedley C. Freake. "Regulation of LIV-1 expression in breast cancer cells. "The FASEB Journal 23 (2009): 897-25.
[21] Sussman, Django, et al. "LIV-1 antibody-drug conjugate: A novel therapeutic agent for breast and prostate cancer." Cancer Research 71.8_Supplement (2011): 3620-3620.
[22] Cheng X, Wei L, Huang X, et al. Solute Carrier Family 39 Member 6 Gene Promotes Aggressiveness of Esophageal Carcinoma Cells by Increasing Intracellular Levels of Zinc, Activating Phosphatidylinositol 3-Kinase Signaling, and Up-regulating Genes That Regulate Metastasis. 2021 May;160(6):2228-2229]. Gastroenterology. 2017;152(8):1985-1997.e12.
[23] Cheng, Xinxin, et al. "Solute carrier family 39 member 6 gene promotes aggressiveness of esophageal carcinoma cells by increasing intracellular levels of zinc, activating phosphatidylinositol 3-kinase signaling, and up-regulating genes that regulate metastasis." Gastroenterology 152.8 (2017): 1985-1997.
[24] Wang, An-Hui, et al. "Epidemiological studies of esophageal cancer in the era of genome-wide association studies. "World Journal of Gastrointestinal Pathophysiology 5.3 (2014): 335.
[25] Lian, Junwei, et al. "miR-192, a prognostic indicator, targets the SLC39A6/SNAIL pathway to reduce tumor metastasis in human hepatocellular carcinoma." Oncotarget 7.3 (2016): 2672.
[26] Pascut, Devis, et al. "HCV Proteins Modulate the Host Cell miRNA Expression Contributing to Hepatitis C Pathogenesis and Hepatocellular Carcinoma Development." Cancers 13.10 (2021): 2485.
[27] Wan, Zhen, and Xuzhen Wang. "Role of SLC39A6 in the development and progression of liver cancer." Oncology letters 23.3 (2022): 1-13.
[28] Zhu, Bo, et al. "Increased expression of zinc transporter ZIP4, ZIP11, ZnT1, and ZnT6 predicts poor prognosis in pancreatic cancer." Journal of Trace Elements in Medicine and Biology 65 (2021): 126734.
[29] Liu, Mingyang, et al. "ZIP4 Promotes Pancreatic Cancer Progression by Repressing ZO-1 and Claudin-1 through a ZEB1-Dependent Transcriptional MechanismZIP4 Regulates Pancreatic Cancer Invasion and Metastasis." Clinical Cancer Research 24.13 (2018): 3186-3196.
[30] Garcia-Recio, Susana, et al. "FGFR4 regulates tumor subtype differentiation in luminal breast cancer and metastatic disease." the Journal of clinical investigation 130.9 (2020): 4871-4887.
[31] Taylor, Kathryn M. "A distinct role in breast cancer for two LIV-1 family zinc transporters." (2008): 1247-1251.
[32] Lim, Wai Feng, et al. "Significantly decreased expressions of CaN, VEGF, SLC39A6 and SFRP1 in MDA-MB-231 xenograft breast tumor mice treated with Moringa oleifera leaves and seed residue (MOLSr) extracts." Nutrients 12.10 (2020): 2993.
[33] Pegram, Mark D., et al. "HER2-Overexpressing/Amplified Breast Cancer as a Testing Ground for Antibody-Drug Conjugate Drug Development in Solid TumorsDrug Development of HER2 Antibody-Drug Conjugates." Clinical Cancer Research 26.4 (2020): 775-786.
[34] Do, Minchenko, et al. "Hypoxic regulation of the expression of genes encoded estrogen related proteins in U87 glioma cells: eff ect of IRE1 inhibition." Endocrine Regulations 51.1 (2017): 8-19.
[35] Burgetová, Lenka. "Investigating the role of zinc transporter ZIP 6 and STAT3 in mitosis." (2013).
[36] SU, Juan. "Expression of SLC39A6 in Hnman Bladder Cancer. "Journal of Medical Research (2018): 35-38.
[37] Ressnerova, Alzbeta, et al. "Zinc and copper homeostasis in head and neck cancer: review and meta-analysis." current medicinal chemistry 23.13 (2016): 1304-1330.
[38] Gao, Jian, et al. "Involvement of SLC39A6 in gastric adenocarcinoma and correlation of the SLC39A6 polymorphism rs1050631 with clinical outcomes after resection." bmc cancer 19.1 (2019): 1-15.
[39] Piqué Borràs, Maria Riera. "Identification of molecular subtypes and gene expression patterns of breast cancer analysing RNA-seq data."(2014).
[40] Zhou, Heng, et al. "Evaluation of the prognostic values of solute carrier (SLC) family 39 genes for patients with lung adenocarcinoma." Aging (Albany NY) 13.4 (2021): 5312.
上一篇: 抗腫瘤治療界后起之秀--CD93
下一篇: 單克隆抗體藥物綜述