轉(zhuǎn)鐵蛋白受體TFR1(TFRC):鐵穩(wěn)態(tài)關(guān)鍵成員,貧血、神經(jīng)退行性疾病、癌癥新銳靶點(diǎn)!
日期:2024-10-23 16:01:00
轉(zhuǎn)鐵蛋白受體TFR1是介導(dǎo)鐵離子進(jìn)入細(xì)胞通道的關(guān)鍵成員之一,在調(diào)節(jié)細(xì)胞鐵代謝和維持鐵平衡中發(fā)揮關(guān)鍵作用。癌細(xì)胞為了快速增殖需要大量鐵,導(dǎo)致細(xì)胞表面轉(zhuǎn)鐵蛋白受體1(TfR1)顯著上調(diào),TfR1通過(guò)與攜鐵蛋白轉(zhuǎn)鐵蛋白結(jié)合來(lái)介導(dǎo)鐵的攝取。利用這一現(xiàn)象和 TfR1 的快速內(nèi)吞速率,美國(guó)丹娜-法伯癌癥研究所Xin Zhou課題組開(kāi)發(fā)了轉(zhuǎn)鐵蛋白受體靶向嵌合體(TransTAC),這是一種用于膜蛋白降解的異雙特異性抗體模式 [1]。TransTAC被設(shè)計(jì)用于驅(qū)動(dòng)感興趣的靶蛋白與TfR1從細(xì)胞表面共同內(nèi)吞,并促使靶蛋白進(jìn)入溶酶體降解途徑。這一研究于2024年9月25日發(fā)表在Nature上,TransTAC代表了一類(lèi)有前景的新型雙功能抗體家族,可用于精確調(diào)控膜蛋白和靶向癌癥治療。
現(xiàn)有研究證實(shí),TFR1在許多腫瘤細(xì)胞中高表達(dá),是潛在的腫瘤標(biāo)志物,且針對(duì)TFR1進(jìn)行治療可以有效地抑制腫瘤生長(zhǎng)和轉(zhuǎn)移。此外,TFR1還與其它疾病如貧血、鐵代謝障礙性疾病等有關(guān)。因此,以TFR1為靶點(diǎn)的治療策略來(lái)靶向調(diào)節(jié)細(xì)胞內(nèi)鐵水平,可以在相關(guān)疾病的臨床應(yīng)用中發(fā)揮重要作用。
1. 什么是TFR1?
1.1 TFR1的結(jié)構(gòu)
轉(zhuǎn)鐵蛋白受體1(Transferrin receptor protein 1,TFR1)也被稱(chēng)為CD71或TFRC。TFR1/TFRC是一種II型跨膜蛋白,是調(diào)節(jié)細(xì)胞內(nèi)鐵元素轉(zhuǎn)運(yùn)過(guò)程的最重要膜蛋白。TFR1是由兩個(gè)同源二聚體的亞基通過(guò)二硫鍵交聯(lián)而成。每個(gè)單體包含一個(gè)大的胞外C端區(qū)域,一個(gè)單跨膜區(qū)域及一個(gè)短的N端區(qū)域。C端區(qū)域作為外功能區(qū),包含了與轉(zhuǎn)鐵蛋白(Transferrin,Tf)相結(jié)合的位點(diǎn)(圖1) [2-4]。目前已發(fā)現(xiàn)兩種轉(zhuǎn)鐵蛋白受體,分別是TFR1和TFR2,它們?cè)诮Y(jié)構(gòu)和功能上都比較相似。在正常生理?xiàng)l件下,TFR1與轉(zhuǎn)鐵蛋白Tf發(fā)生相互作用,促進(jìn)鐵的吸收。這種結(jié)合形式是血液中鐵的主要存在方式 [5-6]。

圖1. TFR1的結(jié)構(gòu) [2]
1.2 TFR1的表達(dá)
TFR1是一種廣泛表達(dá)于人體幾乎所有細(xì)胞和組織類(lèi)型中的膜蛋白。TFR1在人體需要鐵元素時(shí)發(fā)揮作用,介導(dǎo)鐵離子的轉(zhuǎn)運(yùn)和代謝。TFR1的表達(dá)廣泛分布于免疫系統(tǒng)、造血系統(tǒng)(如骨髓干細(xì)胞、紅細(xì)胞和白細(xì)胞)、神經(jīng)系統(tǒng)(如神經(jīng)元和神經(jīng)膠質(zhì)細(xì)胞)、生殖系統(tǒng)、心臟、肝臟、腎臟等各種組織和細(xì)胞類(lèi)型。TFR1的表達(dá)水平受多種因素影響,包括細(xì)胞內(nèi)鐵含量、細(xì)胞分化狀態(tài)、激素調(diào)節(jié)以及炎癥狀態(tài)等 [7-9]。
1.3 TFR1的功能
TFR1最主要的生理功能是與轉(zhuǎn)鐵蛋白(transferrin,Tf)結(jié)合,通過(guò)內(nèi)吞方式介導(dǎo)細(xì)胞對(duì)鐵的攝取。因此,Tf-TFR1系統(tǒng)被認(rèn)為是機(jī)體獲取鐵離子的重要途徑。具體而言,首先,Tf和鐵離子(Fe3+或Fe2+形式)結(jié)合后,其空間結(jié)構(gòu)隨之發(fā)生相應(yīng)變化,將鐵離子包入蛋白內(nèi)形成Tf-Fe2+。其次,TFR1在生理pH下與Tf-Fe2+結(jié)合,Tf-TFR1復(fù)合物被網(wǎng)格蛋白(Clathrin)通過(guò)小窩的內(nèi)吞作用內(nèi)部化(圖2) [10-12]。
隨之,胞內(nèi)Tf-TFR1復(fù)合物被運(yùn)輸至內(nèi)體酸化,TFR1和Tf的氨基酸殘基相互作用,引起構(gòu)象改變促使鐵離子釋放,TFR1通過(guò)高爾基復(fù)合體循環(huán)至細(xì)胞表面完成鐵離子運(yùn)輸??傊?,TFR1在細(xì)胞和組織中扮演著重要角色,通過(guò)TFR1的調(diào)節(jié)來(lái)平衡細(xì)胞內(nèi)鐵含量,維持人體鐵穩(wěn)態(tài)是保證人體各項(xiàng)生理機(jī)能正常運(yùn)作的必要條件 [10-12]。

圖2. Tf-TFR1系統(tǒng)平衡細(xì)胞內(nèi)鐵含量 [2]
2. TFR1相關(guān)的調(diào)控機(jī)制
TFR1是細(xì)胞最重要的鐵元素?cái)z取因子。TFR1表達(dá)量下降或異常會(huì)導(dǎo)致細(xì)胞缺鐵,而過(guò)多的鐵則可能催化活性氧(ROSs)并損傷生物大分子。為了確保充足的鐵元素同時(shí)避免其毒性,細(xì)胞已經(jīng)發(fā)展出多種機(jī)制來(lái)調(diào)控TFR1表達(dá)水平。盡管TFR1異常表達(dá)在多種疾病中發(fā)揮作用,但其分子機(jī)制和作用仍未完全明確。因此,還需要更深入地研究和探索。
TFR1的表達(dá)受多種刺激條件調(diào)控。在轉(zhuǎn)錄水平中,當(dāng)細(xì)胞發(fā)生缺氧時(shí),缺氧誘導(dǎo)因子(HIF)和其他轉(zhuǎn)錄因子如c-Myc、GATA1、Ets-1以及促紅細(xì)胞生成素Stat5可以促進(jìn)其轉(zhuǎn)錄。TFR1的轉(zhuǎn)錄后水平主要由IRP1和IRP2調(diào)控,它們與TFR1 mRNA中的IRE結(jié)合來(lái)影響基因表達(dá) [13-15]。
在翻譯后水平,CD133(PROM1)是TFR1轉(zhuǎn)運(yùn)鐵元素過(guò)程中的負(fù)調(diào)節(jié)因子,同時(shí)EGF受體、c-Abl分子和MARCH8分子可能也參與其中。如下圖所示,一項(xiàng)研究揭示FLCN有可能在翻譯、或者翻譯后水平調(diào)控TFR1的表達(dá),即Tf-TFR1復(fù)合物可與含有Rab11蛋白的循環(huán)內(nèi)體相結(jié)合,回到細(xì)胞膜上(圖3)[13-17]。
TFR1在疾病中發(fā)揮調(diào)控作用。例如,在膠質(zhì)瘤中,TFR1通過(guò)炎癥反應(yīng),細(xì)胞周期,DNA損失及DNA甲基化等機(jī)制參與膠質(zhì)瘤的發(fā)生發(fā)展。此外,PD1信號(hào),如IL17,IL18,NF-kβ,FOXM1,F(xiàn)OCAL及JAK-STAT信號(hào)可能是TFR1調(diào)控的關(guān)鍵信號(hào)通路 [18-20]。在神經(jīng)干細(xì)胞中敲除TFR1發(fā)現(xiàn),條件性敲除小鼠有癲癇的癥狀。并且在此研究中還發(fā)現(xiàn)GluA2在海馬神經(jīng)元突觸上表達(dá)增加,其中突觸前的神經(jīng)遞質(zhì)釋放能力下降,突觸后長(zhǎng)時(shí)程增強(qiáng)(LTP)受到一定的抑制 [21-23]。

圖3. FLCN通過(guò)Rab11A調(diào)控Tf-TFR1蛋白的回收運(yùn)輸 [17]
3. TFR1在腫瘤、神經(jīng)退行性等疾病中的作用
正常人體鐵代謝處于平衡狀態(tài),當(dāng)其中的某一調(diào)控環(huán)節(jié)出現(xiàn)異常導(dǎo)致平衡被打破時(shí),會(huì)影響細(xì)胞內(nèi)自由基形成并加速氧化應(yīng)激反應(yīng)進(jìn)展,同時(shí)也可導(dǎo)致腫瘤發(fā)生和發(fā)展。TFR1作為細(xì)胞攝取鐵元素過(guò)程中最重要的調(diào)控受體,在多種疾病的發(fā)生發(fā)展過(guò)程中起到重要作用。
3.1 TFR1和腫瘤
現(xiàn)有研究表明TFR1在甲狀腺癌 [24]、食管鱗狀細(xì)胞癌 [25]、乳腺癌 [26]、肝癌 [27]、結(jié)腸癌 [28]、白血病 [29]、肺癌 [30]、胰腺癌 [31]、鼻咽癌 [31]等惡性腫瘤中顯著表達(dá)。但在部分惡性腫瘤中,TFR1表達(dá)情況尚不明確,其中包括:前列腺癌、睪丸癌等。例如,在肝癌中,TFR1在肝癌中的表達(dá)與甲胎蛋白和血清凝血酶原的濃度有關(guān) [27];在乳腺癌中,敲降IRP2表達(dá),可提高鐵蛋白重鏈的表達(dá),并下調(diào)TFR1蛋白表達(dá),從而抑制乳腺癌細(xì)胞的生長(zhǎng) [26, 32];在結(jié)腸癌中,TFR1的高表達(dá)可激活I(lǐng)L-6/IL-11-Stat3信號(hào)通路,促進(jìn)結(jié)腸上皮細(xì)胞的增殖和凋亡,從而加重結(jié)腸黏膜的損傷并導(dǎo)致結(jié)腸癌的發(fā)生 [28, 33]。
3.2 TFR1和神經(jīng)退行性疾病
鐵代謝的紊亂是引發(fā)神經(jīng)退行性疾病的病理生理機(jī)制之一。鐵在大腦中的蓄積,與阿爾茨海默病、帕金森病、肌萎縮側(cè)索硬化等神經(jīng)退行性疾病有關(guān) [34]。阿爾茨海默病是最常見(jiàn)神經(jīng)退行性疾病之一,其主要以淀粉樣斑塊的積聚以及某些神經(jīng)元的丟失為發(fā)病特征。有研究表明,抑制阿爾茲海默模型小鼠大腦顳葉皮層中的鐵攝取蛋白TFR1、TF以及DMT1的表達(dá),可有效緩解鐵過(guò)載狀態(tài) [35-36]。
3.3 TFR1和貧血
TFR1與Tf復(fù)合物的結(jié)合,對(duì)紅細(xì)胞生成過(guò)程中細(xì)胞獲取鐵元素有著重要意義。當(dāng)人體內(nèi)發(fā)生缺鐵或者紅細(xì)胞生成增多時(shí),TFR1的表達(dá)將被反應(yīng)性上調(diào)。臨床研究證實(shí),地中海貧血小鼠體內(nèi)的溶性轉(zhuǎn)鐵蛋白受體(sTFR1)和TF的水平都顯著高于正常值。進(jìn)一步研究揭示,TFR1在β-地中海紅系前體細(xì)胞中異常高表達(dá),降低TFR1的表達(dá)可有效調(diào)節(jié)貧血小鼠中無(wú)效紅細(xì)胞的生成并改善小鼠的貧血以及鐵過(guò)載情況 [7, 37]。
3.4 TFR1和其它疾病
TFR1不僅參與細(xì)胞鐵離子運(yùn)輸,有研究提示TFR1還可作為多種病毒受體介導(dǎo)HCV與宿主細(xì)胞膜融合,在HCV入胞過(guò)程中發(fā)揮重要作用。丙型肝炎病毒(HCV)是導(dǎo)致慢性化肝炎、原發(fā)性肝癌的主要病原體。因此,TFR1作為HCV抗病毒靶點(diǎn)的潛在可能性值得關(guān)注 [38-40]。在神經(jīng)元中,研究發(fā)現(xiàn)TFR1對(duì)mGlul的轉(zhuǎn)運(yùn)起到重要的調(diào)節(jié)作用,并且可能參與了mGlul信號(hào)通路,且對(duì)小腦的運(yùn)動(dòng)協(xié)調(diào)能力起到影響 [41-42]。
4. TFR1的臨床研究進(jìn)展
目前已有多款針對(duì)轉(zhuǎn)鐵蛋白受體1(TFR1)的臨床藥物正在研發(fā)中,藥物類(lèi)型涵蓋抗體核酸偶聯(lián)藥物、雙體、單體、抗體融合蛋白、ADC藥物等;適應(yīng)癥涉及非小細(xì)胞肺癌、食管癌、黏多醣貯積癥型、肌強(qiáng)直性營(yíng)養(yǎng)不良、阿爾茨海默癥、杜氏肌營(yíng)養(yǎng)不良癥等。其中,JCR Pharmaceuticals Co., Ltd.的Pabinafusp Alfa,一款靶向IDS和TfR1的抗體融合蛋白已于2021年日本上市。近年來(lái),基于TFR1的靶向治療策略在不斷發(fā)展。有研究利用TFR1提高抗體跨越血腦屏障的轉(zhuǎn)運(yùn)能力,并與抗β-淀粉樣肽單抗相結(jié)合形成特異性復(fù)合抗體,以提高阿爾茨海默病患者的治療效果 [43-44]。
同時(shí),抗TFRC的抗體JST-TFR09和抗TFRC單克隆抗體A24分別可抑制腫瘤細(xì)胞對(duì)鐵元素的攝取,以及誘導(dǎo)T系細(xì)胞白血病中惡性細(xì)胞的凋亡 [45-46]。這些研究提示,TFR1可成為有效的靶標(biāo)分子參與到多種疾病的臨床治療。未來(lái),隨著TFR1相關(guān)研究的不斷深入和完善,有望為患者提供更加精準(zhǔn)、有效的治療,為他們帶來(lái)更多的獲益和新希望。
5. 華美生物TFR1相關(guān)產(chǎn)品
● TFR1重組蛋白
Recombinant Human Transferrin receptor protein 1(TFRC),partial (Active) (Code: CSB-MP3648HU)

High specificity was validated by SDS-PAGE. SDS-PAGE (reduced) with 5% enrichment gel and 15% separation gel.

Immobilized Human TFRC at 2μg/mL can bind Anti-TFRC recombinant antibody (CSB-RA023441MA1HU), the EC50 is 3.305-8.220 ng/mL.
● TFR1抗體
產(chǎn)品名稱(chēng) | 適應(yīng)種屬 | 應(yīng)用 | 貨號(hào) |
---|---|---|---|
TFRC Recombinant Monoclonal Antibody | Human | ELISA | CSB-RA023441MA1HU |
TFRC Antibody | Human | ELISA, IHC, IF | CSB-PA07219A0Rb |
TFRC Antibody | Human, Mouse | ELISA, WB, IHC | CSB-PA001477 |
TFRC Antibody | Human | ELISA, WB | CSB-PA005607 |
Phospho-TFRC (S24) Antibody | Human, Mouse | ELISA, WB, IHC | CSB-PA010092 |
TFRC Antibody | Human, Mouse, Rat | ELISA, WB, IHC | CSB-PA023441GA01HU |
TFRC Antibody | Human, Mouse, Rat | ELISA, WB, IHC | CSB-PA104885 |
TFRC Antibody | Human, Mouse, Rat | ELISA, WB, IHC | CSB-PA834425 |
● TFR1 ELISA試劑盒
產(chǎn)品名稱(chēng) | 檢測(cè)樣本 | 檢測(cè)范圍 | 貨號(hào) |
---|---|---|---|
Mouse transferrin receptor,TFR ELISA Kit | serum, plasma, tissue homogenates | 0.625 ng/mL-40 ng/mL | CSB-E08389m |
Human soluble transferrin receptor,sTfR ELISA Kit | serum, plasma | Request Information | CSB-E09100h |
參考文獻(xiàn):
[1] Transferrin receptor targeting chimeras for membrane protein degradation. Nature, 2024.
[2] Candelaria, Pierre V., et al. "Antibodies targeting the transferrin receptor 1 (TfR1) as direct anti-cancer agents." Frontiers in immunology 12 (2021): 607692.
[3] Jabara, Haifa H., et al. "A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency." Nature genetics 48.1 (2016): 74-78.
[4] Greene, Christopher J., et al. "Transferrin receptor 1 upregulation in primary tumor and downregulation in benign kidney is associated with progression and mortality in renal cell carcinoma patients." Oncotarget 8.63 (2017): 107052.
[5] Kawabata, Hiroshi. "Transferrin and transferrin receptors update." Free Radical Biology and Medicine 133 (2019): 46-54.
[6] Kleven, Mark D., Shall Jue, and Caroline A. Enns. "Transferrin receptors TfR1 and TfR2 bind transferrin through differing mechanisms." Biochemistry 57.9 (2018): 1552-1559.
[7] Li, Huihui, et al. "Decreasing TfR1 expression reverses anemia and hepcidin suppression in β-thalassemic mice." Blood, The Journal of the American Society of Hematology 129.11 (2017): 1514-1526.
[8] Magro, Gaetano, et al. "Aberrant expression of TfR1/CD71 in thyroid carcinomas identifies a novel potential diagnostic marker and therapeutic target." Thyroid 21.3 (2011): 267-277.
[9] Silvestri, Laura, et al. "The extrahepatic role of TFR2 in iron homeostasis." Frontiers in pharmacology 5 (2014): 93.
[10] Tang, Li-Jing, et al. "Ubiquitin-specific protease 7 promotes ferroptosis via activation of the p53/TfR1 pathway in the rat hearts after ischemia/reperfusion." Free Radical Biology and Medicine 162 (2021): 339-352.
[11] Kawabata, Hiroshi. "Transferrin and transferrin receptors update." Free Radical Biology and Medicine 133 (2019): 46-54.
[12] Nadadur, S. S., K. Srirama, and Anuradha Mudipalli. "Iron transport & homeostasis mechanisms: their role in health & disease." Indian Journal of Medical Research 128.4 (2008): 533-544.
[13] Gammella, Elena, et al. "The transferrin receptor: the cellular iron gate." Metallomics 9.10 (2017): 1367-1375.
[14] Tsiftsoglou, Asterios S., Ioannis S. Vizirianakis, and John Strouboulis. "Erythropoiesis: model systems, molecular regulators, and developmental programs." IUBMB life 61.8 (2009): 800-830.
[15] Bayeva, Marina. Novel Regulators of Mitochondrial and Cellular Iron Homeostasis. Diss. Northwestern University, 2012.
[16] Zhao, Lingling, et al. "FLCN is a novel Rab11A-interacting protein that is involved in the Rab11A-mediated recycling transport." Journal of Cell Science 131.24 (2018): jcs218792.
[17] Wang, Xiaojuan, et al. "FLCN regulates transferrin receptor 1 transport and iron homeostasis." Journal of Biological Chemistry 296 (2021).
[18] Ge, Xiaogang, et al. "Treatment with paraquat affects the expression of ferroptosis-related genes." Human & Experimental Toxicology 42 (2023): 09603271231167585.
[19] Wu, Hongrong, et al. "Identification and validation of transferrin receptor protein 1 for predicting prognosis and immune infiltration in lower grade glioma." Frontiers in Molecular Neuroscience 15 (2022).
[20] Wu, Hongrong, et al. "Identification and validation of transferrin receptor protein 1 for predicting prognosis and immune infiltration in lower grade glioma." Frontiers in Molecular Neuroscience 15 (2022): 972308.
[21] Klüssendorf, Malte, et al. "The Golgi-associated PDZ domain protein Gopc/PIST is required for synaptic targeting of mGluR5." Molecular Neurobiology 58.11 (2021): 5618-5634.
[22] Zhou, Jia-Huan, et al. "Ablation of TFR1 in Purkinje cells inhibits mGlu1 trafficking and impairs motor coordination, but not autistic-like behaviors." Journal of Neuroscience 37.47 (2017): 11335-11352.
[23] Warming, Hannah Kate. Haemoglobin neurotoxicity, haptoglobin scavenging and synaptic function in subarachnoid haemorrhage. Diss. University of Southampton, 2023.
[24] Parenti, Rosalba, Lucia Salvatorelli, and Gaetano Magro. "Anaplastic thyroid carcinoma: current treatments and potential new therapeutic options with emphasis on TfR1/CD71." International journal of endocrinology 2014 (2014).
[25] Ye, Jiecheng, et al. "A novel iron (II) phenanthroline complex exhibits anticancer activity against TFR1-overexpressing esophageal squamous cell carcinoma cells through ROS accumulation and DNA damage." Biochemical Pharmacology 166 (2019): 93-107.
[26] Corte-Rodriguez, Mario, et al. "Quantitative analysis of transferrin receptor 1 (TfR1) in individual breast cancer cells by means of labeled antibodies and elemental (ICP-MS) detection." Analytical chemistry 91.24 (2019): 15532-15538.
[27] Xiao, Chong, et al. "Transferrin receptor regulates malignancies and the stemness of hepatocellular carcinoma-derived cancer stem-like cells by affecting iron accumulation." PLoS One 15.12 (2020): e0243812.
[28] Cui, Can, et al. "Downregulation of TfR1 promotes progression of colorectal cancer via the JAK/STAT pathway." Cancer Management and Research 11 (2019): 6323.
[29] Liu, Qian, et al. "Significance of CD71 expression by flow cytometry in diagnosis of acute leukemia." Leukemia & lymphoma 55.4 (2014): 892-898.
[30] Jeong, Seung Min, Sunsook Hwang, and Rho Hyun Seong. "Transferrin receptor regulates pancreatic cancer growth by modulating mitochondrial respiration and ROS generation." Biochemical and biophysical research communications 471.3 (2016): 373-379.
[31] Martínez;nez, Laura E., et al. "Targeting TfR1 with the ch128. 1/IgG1 Antibody Inhibits EBV-driven Lymphomagenesis in Immunosuppressed Mice Bearing EBV+ Human Primary B-cells." Molecular cancer therapeutics 20.9 (2021): 1592-1602.
[32] Chen, Chunli, et al. "Deferoxamine-induced high expression of TfR1 and DMT1 enhanced iron uptake in triple-negative breast cancer cells by activating IL-6/PI3K/AKT pathway." OncoTargets and therapy 12 (2019): 4359.
[33] Huang, Luji, et al. "Iron metabolism in colorectal cancer." Frontiers in Oncology 13 (2023).
[34] Whitnall, Megan, and Des R. Richardson. "Iron: a new target for pharmacological intervention in neurodegenerative diseases." Seminars in pediatric neurology. Vol. 13. No. 3. WB Saunders, 2006.
[35] Yu, Xiaojun, et al. "Decreased iron levels in the temporal cortex in postmortem human brains with Parkinson disease." Neurology 80.5 (2013): 492-495.
[36] Lu, Li-Na, et al. "Expression of iron transporters and pathological hallmarks of Parkinson’s and Alzheimer’s diseases in the brain of young, adult, and aged rats." Molecular neurobiology 54 (2017): 5213-5224.
[37] Cabrera, C., et al. "Relationship between iron deficiency and expression of genes involved in iron metabolism in human myocardium and skeletal muscle." International journal of cardiology 379 (2023): 82-88.
[38] Fillebeen, Carine, and Kostas Pantopoulos. "Hepatitis C virus infection causes iron deficiency in Huh7. 5.1 cells." PLoS One 8.12 (2013): e83307.
[39] Lindenbach, Brett D., and Charles M. Rice. "The ins and outs of hepatitis C virus entry and assembly." Nature Reviews Microbiology 11.10 (2013): 688-700.
[40] Bonkovsky, Herbert L., et al. "Iron and HFE or TfR1 mutations as comorbid factors for development and progression of chronic hepatitis C." Journal of Hepatology 37.6 (2002): 848-854.
[41] Kalinowska, Magdalena. Metabotropic regulation of dendritic spine structural plasticity. Diss. Yeshiva University, 2015.
[42] Zhou, Jia-Huan, et al. "Ablation of TFR1 in Purkinje cells inhibits mGlu1 trafficking and impairs motor coordination, but not autistic-like behaviors." Journal of Neuroscience 37.47 (2017): 11335-11352.
[43] Bray, Natasha. "Transferrin'bispecific antibodies across the blood–brain barrier." Nature Reviews Drug Discovery 14.1 (2015): 14-15.
[44] Pardridge, William M. "Blood–brain barrier drug delivery of IgG fusion proteins with a transferrin receptor monoclonal antibody." Expert opinion on drug delivery 12.2 (2015): 207-222.
[45] Shimosaki, Shunsuke, et al. "Development of a complete human IgG monoclonal antibody to transferrin receptor 1 targeted for adult T-cell leukemia/lymphoma." Biochemical and biophysical research communications 485.1 (2017): 144-151.
[46] Candelaria, Pierre V., et al. "Antibodies targeting the transferrin receptor 1 (TfR1) as direct anti-cancer agents." Frontiers in immunology 12 (2021): 607692.