搡老女人多毛老妇女中国,日韩亚洲欧美中文高清在线,人妻少妇一区二区三区,色妞色综合久久夜夜,日本熟妇xxxx

Your Good Partner in Biology Research

CNR1(CB1):內(nèi)源性大麻素系統(tǒng)ECS經(jīng)典受體,為糖脂代謝和腫瘤注入全新研究價值!

日期:2023-09-08 11:43:55

最近,丹麥諾和諾德(Novo Nordisk)宣布計劃以高達(dá)10.75億美元的價格收購加拿大生物技術(shù)公司Inversago Pharma,以獲取其基于CB1受體(CB1R)的創(chuàng)新療法INV-202。這項收購將進(jìn)一步強(qiáng)化Novo Nordisk在減重領(lǐng)域的戰(zhàn)略布局,該公司已擁有了一款強(qiáng)勁的靶向GLP-1R的減重藥物Wegovy。INV-202是一種口服CB1R拮抗劑,可以阻斷CB1R的活化,從而減少食欲、降低體重、改善血糖和血脂等。

更加令人振奮的是,多款針對CNR1(CB1R/CB1)的藥物在腫瘤治療方面也逐漸顯現(xiàn)出潛力。例如,Rimonabant正處于II期臨床試驗中,用于治療晚期胃癌,同時AM251也正在進(jìn)行I期臨床試驗,以應(yīng)用于晚期乳腺癌治療。因此,CB1R作為經(jīng)典大麻素受體,越來越多的制藥公司對這個靶點表現(xiàn)出濃厚興趣,以探索其在治療腫瘤和其他代謝疾病方面的潛力!


1. 什么是內(nèi)源性大麻素系統(tǒng)ECS?

內(nèi)源性大麻素系統(tǒng)(Endocannabinoid system,ECS)是最重要的能夠維持機(jī)體內(nèi)環(huán)境穩(wěn)定的生理系統(tǒng)之一,也是重要的脂質(zhì)代謝平衡調(diào)控因子。ECS主要包括內(nèi)源性大麻素(AEA、2-AG)及其衍生物,大麻素受體(CNR1、CNR2)及非經(jīng)典大麻素受體(eg. PPAR、GPR55),各種代謝酶組成(eg. FAAH、MAGL)。ECS成員廣泛分布在全身各種組織,如大腦,免疫細(xì)胞,結(jié)締組織等。ECS與神經(jīng)作用、炎癥發(fā)生、纖維化、疼痛調(diào)節(jié)等一系列病理生理過程密切相關(guān),參與調(diào)控能量代謝,控制胰島素分泌,維持血脂水平及性激素調(diào)控等。近期針對ECS的研究主要圍繞它在能量平衡、自體免疫和抗腫瘤中發(fā)揮的作用,其中,大麻素受體CNRl的抗腫瘤作用是最近研究的熱點 [1-2]


2. 什么是大麻素Ⅰ型受體基因(CNR1)?

2.1 CNR1的結(jié)構(gòu)

大麻素Ⅰ型受體(Cannabinoid receptor 1,CB1R或CB1、CNR1)作為內(nèi)源性大麻素信號系統(tǒng)最經(jīng)典的受體之一,是一種G蛋白耦聯(lián)的膜受體。CNRl基因位于6q14-q15染色體,包含4個外顯子和3個內(nèi)含子,編碼的蛋白CB1R由473個氨基酸組成,N端117位氨基酸形成胞外區(qū),C端401-473位氨基酸構(gòu)成胞內(nèi)區(qū),中間有七次跨膜(圖1[3]。胞外區(qū)還含有七次跨膜形成的三個親水性結(jié)構(gòu)域:e1、e2及e3,其中e2被認(rèn)為是與大麻類物質(zhì)結(jié)合的功能域。大麻素類物質(zhì)作用于CNR1后,會激活多重細(xì)胞內(nèi)信號轉(zhuǎn)導(dǎo)通路,發(fā)揮各種生理和病理功能 [4]

2.2 CNR1的表達(dá)和功能

CNR1被克隆和鑒定的最初,一直被認(rèn)為其僅在腦中表達(dá)。但是大量的后續(xù)研究揭示,其不僅在腦中表達(dá),同樣在外周的細(xì)胞和組織中也表達(dá),比如肺、肝臟、腎、消化道、脂肪組織和骨骼肌 [5-6]。CNR1通過大麻素及其衍生物刺激或結(jié)合,激活胞內(nèi)信號,介導(dǎo)ECS發(fā)揮廣泛而復(fù)雜的生物學(xué)作用。例如,CNR1對記憶、認(rèn)知、運動、情緒等有重要的調(diào)節(jié)作用;CNR1對腺苷酸環(huán)化酶系統(tǒng)中的第二信使AMP水平進(jìn)行調(diào)控,從而影響細(xì)胞功能、物質(zhì)代謝、免疫功能和基因表達(dá)等;CNR1還通過細(xì)胞內(nèi)鈣調(diào)蛋白系統(tǒng)調(diào)整鈣離子水平,鈣離子在細(xì)胞功能中具有關(guān)鍵作用,包括影響信號傳導(dǎo)、腫瘤發(fā)展以及細(xì)胞自噬等 [7-8]。近年來,這一系列的發(fā)現(xiàn)為CNRl這一發(fā)現(xiàn)已逾30年的經(jīng)典蛋白注入全新的研究價值!

CNR1的結(jié)構(gòu)

圖1. CNR1的結(jié)構(gòu) [3]


3. CNR1相關(guān)的信號通路

3.1 CNR1抑制G蛋白偶聯(lián)受體信號機(jī)制

目前,CNR1(CB1R)作為抑制性G蛋白偶聯(lián)受體家族成員,其信號轉(zhuǎn)導(dǎo)機(jī)制已經(jīng)得到相對清晰的研究。大麻素受體作用機(jī)制主要通過調(diào)控G蛋白介導(dǎo)胞內(nèi)第二信使環(huán)磷酸腺苷的產(chǎn)生、鈣離子通道、絲裂原活化蛋白激酶MAPKs的活性等相關(guān)信號傳導(dǎo)通路(圖2[9]。以內(nèi)源性大麻素(Endocannabinoid,EC)的激活作用為例進(jìn)行說明。

在腦內(nèi),EC作為一種逆向性神經(jīng)遞質(zhì),從突觸后神經(jīng)元釋放,并作用于突觸前膜,從而引發(fā)CB1R產(chǎn)生一系列效應(yīng)。CB1R被激活后,通過Gi/o蛋白信號轉(zhuǎn)導(dǎo)途徑,抑制腺苷酸環(huán)化酶的活性,降低細(xì)胞內(nèi)cAMP水平。此外,CB1R還通過調(diào)節(jié)離子通道的活性,促進(jìn)鉀離子(K+)外流,降低細(xì)胞內(nèi)鉀離子(Ca2+)水平,并抑制L、N、P/Q型電壓依賴性Ca2+通道的活性,降低細(xì)胞內(nèi)Ca2+水平,進(jìn)而減少突觸前膜神經(jīng)元內(nèi)γ-氨基丁酸(GABA)、谷氨酸等神經(jīng)遞質(zhì)的釋放 [9]。

該過程還導(dǎo)致CB1R被磷酸化并激活絲裂原激活蛋白激酶,磷酸化的CB1R與β-arrestin分子緊密聯(lián)系,參與調(diào)節(jié)G蛋白偶聯(lián)受體信號。此外,在特定環(huán)境中,CB1R還能通過Gs蛋白信號途徑激活腺苷酸環(huán)化酶,增加細(xì)胞內(nèi)cAMP含量。再者,CB1R還能通過Gq蛋白信號途徑激活Gq偶聯(lián)的胞內(nèi)鈣離子通道,這種效應(yīng)具有細(xì)胞選擇性。CB1R介導(dǎo)的藥理效應(yīng)在不同組織中存在差異,可能是因為CB1R能夠與其他受體形成寡聚體/二聚體結(jié)構(gòu) [9-10]。

CNR1抑制G蛋白偶聯(lián)受體信號機(jī)制

圖2. CNR1抑制G蛋白偶聯(lián)受體信號機(jī)制 [9]

3.2 CNR1協(xié)同大麻素系統(tǒng)的抗腫瘤機(jī)制

大麻素系統(tǒng)在抗癌作用上機(jī)制十分復(fù)雜。一般認(rèn)為,大麻素通過與細(xì)胞膜上的受體CNRl(CB1)或CNR2(CB2)結(jié)合,導(dǎo)致細(xì)胞內(nèi)神經(jīng)酰胺合成增加,從而激活ERK通路、p38MAPK、PI3K/PKB信號通路,促進(jìn)細(xì)胞凋亡 [11]。此外,大麻素與受體結(jié)合后還能通過ERK和PI3K/PKB信號通路激活P27/KIP1、Cyclins、Cdks信號通路,從而抑制細(xì)胞增值 [12]。另外,大麻素與受體CNRl或CNR2結(jié)合抑制AKT/PKB磷酸化以及MMP-2、MMP-9的分泌,從而抑制腫瘤細(xì)胞的遷移 [13-14]。

CNR1協(xié)同大麻素系統(tǒng)的抗腫瘤機(jī)制

圖3. CNR1協(xié)同大麻素系統(tǒng)的抗腫瘤機(jī)制 [11]


4. CNRl在疾病中的作用

4.1 CNR1與腫瘤

CNR1(CB1R)在不同腫瘤中的作用廣泛而復(fù)雜。CNR1在多種腫瘤中表達(dá)上調(diào),包括前列腺癌 [15]、胰腺癌 [16]、霍奇金淋巴瘤 [17]、腎透明細(xì)胞癌 [18]和腎嗜酸細(xì)胞癌 [19]等,然而,在低分化肝細(xì)胞癌及結(jié)腸癌中表達(dá)下調(diào) [20-21]。在胰腺癌中,低表達(dá)CNR1的患者疼痛較輕,預(yù)后較好 [16];在前列腺癌中,高表達(dá)CNR1與前列腺腫瘤惡性程度高及預(yù)后差相關(guān) [15];但是,在肝癌中,高表達(dá)CNR1患者預(yù)后較好 [20]。因此,CNR1在不同腫瘤發(fā)生發(fā)展中的作用仍然需要深入探索。

CNR1還與腫瘤的生長、血管發(fā)生和遷移有關(guān),可發(fā)揮抗癌作用。目前所有圍繞內(nèi)源性大麻素系統(tǒng)抑癌作用的研究都是利用大麻素類似物—大麻素激動劑來完成的。在人類乳腺癌肺轉(zhuǎn)移鼠模型中應(yīng)用大麻素受體激動劑(JWH133和Win55, 212-2)可抑制原發(fā)腫瘤的生長,降低肺轉(zhuǎn)移病灶的大小和數(shù)量 [22-23]。在雄激素抵抗的PC-3前列腺癌細(xì)胞鼠模型中,在腫瘤周圍直接注射JWH015能明顯縮小腫瘤 [24]。大麻素可通過損害機(jī)體抗腫瘤免疫能力,促進(jìn)IL-4IL-10等分泌,進(jìn)而促進(jìn)乳腺癌的發(fā)生發(fā)展 [25]。在黑色素瘤和腎癌研究中,CNR1特異性抑制劑AM251可明顯抑制腫瘤細(xì)胞的增殖,促進(jìn)腫瘤細(xì)胞的凋亡與G2/M周期阻滯 [26-27]。

4.2 CNR1與糖脂代謝相關(guān)疾病

CNR1(CB1R)過表達(dá)會影響許多疾病,例如肥胖、代謝綜合征、糖尿病、脂肪肝等 [28-32]。利莫那班(Rimonabant)是CNR1選擇性受體拮抗劑,通過減低中樞神經(jīng)系統(tǒng)受體的活性,從而降低患者的食欲、進(jìn)食量、減少肝內(nèi)脂肪生成等。同時,Rimonabant可通過抑制外周組織(如骨骼肌、脂肪組織等)受體的過度表達(dá),發(fā)揮著減肥作用,并且改善胰島素抵抗和脂肪組織的代謝。該抑制劑在臨床上已被廣泛用于減肥治療,可有效改善與肥胖癥相關(guān)疾病的危險因素 [33-34]

關(guān)于抑制CB1R后產(chǎn)生上述效應(yīng)的具體機(jī)制仍不清楚。有研究指出,CB1受體抑制劑可以改善胰島素抵抗,其機(jī)制可能是激活受體CB1R可使肝臟脂肪合成轉(zhuǎn)錄因子固醇調(diào)節(jié)元件結(jié)合蛋白-lc、乙酰輔酶A羧化酶-1和脂肪酸合成酶基因表達(dá)增高,引起小鼠肥胖 [35]。過高的脂肪酸水平會使胰島素刺激的葡萄糖攝取功能受損,導(dǎo)致血糖升高,慢性高血糖引起胰島B細(xì)胞功能的減退??傊?,激動CB1R可以增加體重,升高血脂,加重胰島素抵抗和使胰島B細(xì)胞功能減退,抑制CB1R可逆轉(zhuǎn)此效應(yīng),這為糖脂代謝相關(guān)疾病的治療提供了新的思路。

4.3 CNR1與其它疾病

此外,CNR1在情感障礙、抑郁癥、腸道疾病、銀屑病和疼痛方面的作用也受到了一些關(guān)注 [36-40]。一些研究發(fā)現(xiàn),CNR1基因的變異或是抑郁癥發(fā)生的風(fēng)險因素,尤其是在女性和年輕人中 [41];CNR1還在調(diào)節(jié)腸道的運動、分泌、感覺和免疫反應(yīng)方面發(fā)揮著重要的作用,這些方面都與腸易激綜合征和潰瘍性結(jié)腸炎的發(fā)病機(jī)制有關(guān) [37];銀屑病患者血清和皮損組織中CNR1和CNR2表達(dá)升高,且與患者病情嚴(yán)重程度有關(guān) [38];此外,CNR1激動劑對神經(jīng)性疼痛、癌癥相關(guān)疼痛和其他慢性非癌性疼痛有一定的鎮(zhèn)痛效果,但也有一些不良反應(yīng),如精神障礙、惡心和嗜睡等 [39-40]。


5. CNR1的臨床藥物研究前景

目前,全球已經(jīng)上市了兩種基于CNR1的靶向藥物,用于治療肥胖、癌癥疼痛等多種疾病。特別值得一提的是,大麻二酚/四氫大麻酚(Cannabidiol/Dronabinol)藥物已獲得歐盟認(rèn)定為孤兒藥資格。目前,CNR1已有100多個臨床在研項目,這些CNR1相關(guān)藥物主要包括小分子化合物,單克隆抗體和診斷用放射藥物等。CNR1作為參與多種生理功能的大麻素受體,如情緒、食欲、脂質(zhì)代謝、認(rèn)知和疼痛等,其臨床研究領(lǐng)域涵蓋內(nèi)分泌、神經(jīng)、皮膚、代謝、腫瘤等多個領(lǐng)域。在這些領(lǐng)域,研究人員主要利用CNR1的拮抗劑、反向激動劑、激動劑或調(diào)節(jié)劑來治療各種疾病,如肥胖、糖尿病、疼痛、焦慮、惡病質(zhì)、藥物中毒、腫瘤等。隨著對CNR1的深入了解和創(chuàng)新藥物的不斷開發(fā),CNR1已成為治療腫瘤和其他代謝疾病的重要靶點之一!

為鼎力協(xié)助科研和藥企人員針對CNR1在多種糖脂代謝相關(guān)疾病和腫瘤中的臨床應(yīng)用研究,CUSABIO推出CNR1活性蛋白(Code: CSB-MP005678HU),助力您在CNR1機(jī)制方面的研究或其潛在臨床價值的探索。

Cannabinoid receptor 1(CNR1)蛋白

Recombinant Human Cannabinoid receptor 1(CNR1)-VLPs (Active)

High Specifity Validated by SDS-PAGE
CSB-MP005678HU WB

The high specifity is detected by Mouse anti-6*His monoclonal antibody.

Excellent Bioactivity Validated by Functional ELISA
High Purity Validated of CSB-MP0172MP005678HU60HU1

Immobilized Human CNR1 at 10 μg/ml can bind Anti-CNR1 recombinant antibody (CSB-RA005678MA01HU), the EC50 is 41.72-63.54 ng/mL.


參考文獻(xiàn):

[1] Battista, Natalia, et al. "The endocannabinoid system: an overview." Frontiers in behavioral neuroscience (2012): 9.

[2] Lu, Hui-Chen, and Ken Mackie. "Review of the endocannabinoid system." Biological Psychiatry: Cognitive Neuroscience and Neuroimaging 6.6 (2021): 607 -615.

[3] Jourdan, Tony. Impact du système endocannabino?dien sur la physiologie de l'obésité: effets de l'antagonisme des récepteurs CB1 sur le métabolisme glucido-lipidique de la souris obèse. Diss. Dijon, 2010.

[4] Benyamina, Amine, et al. "CNR1 gene polymorphisms in addictive disorders: a systematic review and a meta-analysis." Addiction biology 16.1 (2011): 1-6.

[5] Ujike, H., et al. "CNR1, central cannabinoid receptor gene, associated with susceptibility to hebephrenic schizophrenia." Molecular psychiatry 7.5 ( 2002): 515-518.

[6] Tao, Ran, et al. "Cannabinoid receptor CNR1 expression and DNA methylation in human prefrontal cortex, hippocampus and caudate in brain development and schizophrenia." Translational psychiatry 10.1 (2020): 158.

[7] Szafran, Brittany N., et al. "Cnr1-/- has minimal impact on chlorpyrifos-mediated effects in the mouse endocannabinoid system, but it does alter lipopolysaccharide-induced cytokine levels in splenocytes." Chemico-Biological Interactions 375 (2023): 110425.

[8] Huynh, Karina. "CNR1 antagonism attenuates cannabis-induced atherosclerosis." Nature Reviews Cardiology 19.7 (2022): 432-432.

[9] Busquets-Garcia, Arnau, Jaideep Bains, and Giovanni Marsicano. "CB1 receptor signaling in the brain: extracting specificity from ubiquity." Neuropsychopharmacology 43.1 (2018): 4-20.

[10] Lutz, Beat. "Neurobiology of cannabinoid receptor signaling." Dialogues in clinical neuroscience (2022).

[11] Chakravarti, Bandana, Janani Ravi, and Ramesh K. Ganju. "Cannabinoids as therapeutic agents in cancer: current status and future implications." Oncotarget 5.15 (2014): 5852.

[12] Galve-Roperh, Ismael, et al. "Mechanism of extracellular signal-regulated kinase activation by the CB1 cannabinoid receptor." Molecular pharmacology 62.6 (2002): 1385-1392.

[13] Hong, Jun, et al. "CB1 cannabinoid receptor agonist inhibits matrix metalloproteinase activity in spinal cord injury: a possible mechanism of improved recovery." Neuroscience letters 597 (2015): 19-24.

[14] Adhikary, Sabina, et al. "Signaling through cannabinoid receptor 2 suppresses murine dendritic cell migration by inhibiting matrix metalloproteinase 9 expression." Blood, The Journal of the American Society of Hematology 120.18 (2012): 3741-3749.

[15] Chung, Sui Chu, et al. "A high cannabinoid CB1 receptor immunoreactivity is associated with disease severity and outcome in prostate cancer." European Journal of Cancer 45.1 (2009): 174-182.

[16] Michalski, Christoph W., et al. "Cannabinoids in pancreatic cancer: correlation with survival and pain." international journal of cancer 122.4 (2008). : 742-750.

[17] Benz, Alexander H., et al. "Expression and functional relevance of cannabinoid receptor 1 in Hodgkin lymphoma." PloS one 8.12 (2013): e81675.

[18] Larrinaga, Gorka, et al. "Cannabinoid CB1 receptor is downregulated in clear cell renal cell carcinoma." Journal of Histochemistry & Cytochemistry 58.12 (2010): 1129-1134.

[19] Varricchi, Gilda, et al. "Innate effector cells in angiogenesis and lymphangiogenesis." current opinion in immunology 53 (2018): 152-160.

[20] Larrinaga, Gorka, et al. "Cannabinoid CB1 receptor is expressed in chromophobe renal cell carcinoma and renal oncocytoma." Clinical Biochemistry 46.7 -8 (2013): 638-641.

[21] Argaw, Anteneh, et al. "Concerted action of CB1 cannabinoid receptor and deleted in colorectal cancer in axon guidance." Journal of Neuroscience 31.4 ( 2011): 1489-1499.

[22] Qamri, Zahida, et al. "Synthetic cannabinoid receptor agonists inhibit tumor growth and metastasis of breast cancer." Molecular cancer therapeutics 8.11 (2009): 3117-3129.

[23] Sophocleous, Antonia, et al. "Bone cell-autonomous contribution of type 2 cannabinoid receptor to breast cancer-induced osteolysis." Journal of Biological Chemistry 290.36 (2015): 22049-22060.

[24] Olea-Herrero, N., et al. "Inhibition of human tumour prostate PC-3 cell growth by cannabinoids R (+)-Methanandamide and JWH-015: involvement of CB2." British journal of cancer 101.6 (2009): 940-950.

[25] McKallip, Robert J., Mitzi Nagarkatti, and Prakash S. Nagarkatti. "Δ-9-tetrahydrocannabinol enhances breast cancer growth and metastasis by suppression of the antitumor immune response." The Journal of Immunology 174.6 (2005): 3281-3289.

[26] Kenessey, István, et al. "Revisiting CB1 receptor as drug target in human melanoma." Pathology & Oncology Research 18 (2012): 857-866.

[27] Larrinaga, Gorka, et al. "Cannabinoid CB1 receptor is downregulated in clear cell renal cell carcinoma." Journal of Histochemistry & Cytochemistry 58.12 (2010): 1129-1134.

[28] Tam, Joseph, et al. "Endocannabinoids in liver disease." Hepatology 53.1 (2011): 346-355.

[29] Pacher, Pál, and George Kunos. "Modulating the endocannabinoid system in human health and disease-successes and failures. "The FEBS journal 280.9 (2013): 1918-1943.

[30] Kunos, George, and Joseph Tam. "The case for peripheral CB1 receptor blockade in the treatment of visceral obesity and its cardiometabolic complications." British journal of pharmacology 163.7 (2011): 1423-1431.

[31] Cota, Daniela. "CB1 receptors: emerging evidence for central and peripheral mechanisms that regulate energy balance, metabolism, and cardiovascular health." Diabetes/metabolism research and reviews 23 7 (2007): 507-517. health." Diabetes/metabolism research and reviews 23.7 (2007): 507-517.

[32] Leal, Ermelindo C., et al. "Diabetes and Cannabinoid CB1 receptor deficiency promote similar early onset aging-like changes in the skin." Experimental gerontology 154 (2021): 111528.

[33] Henness, Sheridan, Dean M. Robinson, and Katherine A. Lyseng-Williamson. "Rimonabant." Drugs 66 (2006): 2109-2119.

[34] Christensen, Robin, et al. "Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomized trials." The Lancet 370.9600 (2007). 1706-1713.

[35] Schwabe, Robert F. "Endocannabinoids promote hepatic lipogenesis and steatosis through CB1 receptors." (2005): 959-961.

[36] Witkin, Jeffrey M., et al. "A therapeutic role for cannabinoid CB1 receptor antagonists in major depressive disorders." Trends in pharmacological sciences 26.12 (2005): 609-617.

[37] Galiazzo, Giorgia, et al. "Localization of cannabinoid receptors CB1, CB2, GPR55, and PPARα in the canine gastrointestinal tract." Histochemistry and cell biology 150 (2018): 187-205.

[38] Wilkinson, Jonathan D., and Elizabeth M. Williamson. "Cannabinoids inhibit human keratinocyte proliferation through a non-CB1/CB2 mechanism and have a potential therapeutic value in the treatment of psoriasis." Journal of dermatological science 45.2 (2007): 87-92.

[39] Clayton, N., et al. "CB1 and CB2 cannabinoid receptors are implicated in inflammatory pain." Pain 96.3 (2002): 253-260.

[40] Davis, Mellar P. "Cannabinoids in pain management: CB1, CB2 and non-classic receptor ligands." expert opinion on investigational drugs 23.8 (2014). 1123-1140.

[41] Ostlund, Isaac, et al. "Chronic Δ9-tetrahydrocannabinol impact on plasticity, and differential activation requirement for CB1-dependent long-term depression in ventral tegmental area GABA neurons in adult versus young mice." Frontiers in Neuroscience 16 (2023): 1067493.

特別關(guān)注