ENPP3(CD203c):ENPPs核苷酸代謝胞外酶,能量代謝調(diào)控者、變態(tài)反應標記物、腎癌RCC治療在研靶點!
日期:2023-09-20 13:54:04
最近,美國Xencor公司推出臨床藥物AGS-16M8F12(ENPP3 x CD3),一款針對ENPP3的雙特異性抗體藥物,旨在評估其在轉(zhuǎn)移性腎細胞癌(RCC)患者中的安全性、藥代動力學和推薦劑量。膜外核苷酸焦磷酸酯酶/磷酸二酯酶(ENPPs)家族是近年備受研究者關(guān)注的一類胞外酶。ENPP1已有廣泛文獻和臨床研究,相比之下,ENPP3的國內(nèi)外研究報道較為有限。然而,陸續(xù)的研究成果逐漸揭示ENPP3在能量代謝和變態(tài)反應等生理過程中具有重要作用。特別是在腫瘤治療領(lǐng)域,靶向ENPP3已展現(xiàn)出巨大潛力。因此,深入研究ENPP3可能揭示新的生理機制,為相關(guān)疾病的診斷和治療提供創(chuàng)新性方法!
1. 什么是膜外核苷酸焦磷酸酯酶/磷酸二酯酶家族(ENPPs)?
膜外核苷酸焦磷酸酯酶/磷酸二酯酶家族(Ecto-nucleotide pyrophosphatase/phosphodiesterase, E-NPPs/ENPPs)是一組在哺乳動物體內(nèi)具有相似結(jié)構(gòu)的膜蛋白。目前共發(fā)現(xiàn)該家族的7個成員(ENPP1~ENPP7)。該家族名稱的由來是因為最初發(fā)現(xiàn)的ENPP1、ENPP2、ENPP3均具有水解核苷酸及其衍生物的焦磷酸酯鍵/磷酸二酯鍵的活性。而進一步的研究表明,ENPPs的一些成員還具有重要的磷脂酶活性。ENPP4、ENPP5、ENPP6則是在大規(guī)模測序時發(fā)現(xiàn)的未知功能蛋白,根據(jù)其與ENPPs的結(jié)構(gòu)同源性而將其列入該家族。近幾年來,有關(guān)ENPPs在多種生理病理過程中復雜機制的研究已取得很大進展,它們參與的很多病理過程與其胞外作用有關(guān),這使得它們成為治療相關(guān)疾病的潛在靶標 [1-3]。
2. 什么是ENPP3?
2.1 ENPP3的結(jié)構(gòu)
ENPP3(又名CD203c或NPP3)屬于膜外核苷酸焦磷酸酯酶/磷酸二酯酶家族蛋白成員(ENPPs)。ENPP3最初被命名為Gp130RB13-6,它可以識別一類中度表達的酸性神經(jīng)膠質(zhì)纖維蛋白亞類,這類蛋白通常存在于大鼠神經(jīng)膠質(zhì)母細胞中。ENPP3基因位于人類染色體6q23.2-q23.3區(qū)域。ENPPs的氨基酸序列具有較高的同源性,目前研究較為清楚的NPP1、NPP2、NPP3屬于一個亞家族,它們是Ⅱ型膜蛋白,這3個成員均含有一個短的細胞內(nèi)N端、單一的穿膜區(qū)和1個較長的胞外區(qū),胞外區(qū)包含有2個生長調(diào)節(jié)素B樣結(jié)構(gòu)域、1個保守的磷酸二酯酶樣催化結(jié)構(gòu)域、1個核酸酶樣序列和1個EF-手象的Ca2+結(jié)合模體 (圖1)[5-6]。
2.2 ENPP3的表達和功能
ENPP3在人體的前列腺、子宮、結(jié)腸、嗜堿性粒細胞、肥大細胞、祖細胞,以及某些腫瘤中表達。雖然在人的肝臟、胰腺和腸道中未檢測到ENPP3的表達,但在大鼠的這些組織中均已發(fā)現(xiàn)。ENPPs這些酶的核苷酸底物可以觸發(fā)P2X離子通道受體/P2X嘌呤受體(如P2RX1、P2RX2、P2RX3、P2RX4、P2RX5、P2RX6、P2RX7)和某些G蛋白偶聯(lián)受體/P2Y嘌呤受體(如P2RY1、P2RY2、P2RY3、P2RY4、P2RY5、P2RY6、P2RY7、P2RY8, etc.)。這些P2X和P2Y受體家族在許多生理和病理過程中發(fā)揮關(guān)鍵作用 [7-10]。
ENPP3作為調(diào)節(jié)嘌呤代謝的胞外酶,其關(guān)鍵功能之一是抑制肥大細胞和嗜堿性粒細胞在慢性炎癥和過敏反應中的活性。值得注意的是,也有研究認為ENPP3與人類多種癌癥的發(fā)病可能存在關(guān)聯(lián),尤其是腎細胞癌。盡管在國內(nèi)報道非常少,但國外的研究陸續(xù)證明ENPP3與過敏反應和腫瘤的發(fā)生發(fā)展密切相關(guān)。因此,ENPP3有望成為多種過敏反應的診斷標志物或腫瘤治療的重要靶點 [7-10]!

圖1. ENPP3的結(jié)構(gòu) [6]
3. ENPP3相關(guān)的信號機制
3.1 ENPP3在能量代謝中的機制
ENPPs作為一種能夠水解細胞外核苷酸的酶,在能量代謝和細胞外信號傳導方面扮演著重要的角色。一項研究通過動力學分析揭示了ENPP3抑制GnT-IX(GnT-Vb)的機制。GnT-IX是一種糖基轉(zhuǎn)移酶,在糖基化(glycosylation)過程中發(fā)揮重要作用。GnT-IX(GnT-Vb)酶在進行糖基化反應時需要使用UDP-GlcNAc這個底物。UDP-GlcNAc提供了所需的糖分子GlcNAc,這些分子將被GnT-IX(GnT-Vb)酶轉(zhuǎn)移到其他分子上,形成復雜的糖鏈結(jié)構(gòu),從而影響蛋白質(zhì)穩(wěn)定性、細胞識別、信號傳導和細胞黏附等多個生物學過程 [12]。
然而,在研究中發(fā)現(xiàn),ENPP3酶可將UDP-GlcNAc分解為UMP(尿苷酸單磷酸)。當UMP與UDP-GlcNAc競爭性結(jié)合GnT-IX(GnT-Vb)時,UMP會占據(jù)GnT-IX(GnT-Vb)酶需要使用的底物位置。這意味著,GnT-IX(GnT-Vb)不再能夠有效地與UDP-GlcNAc結(jié)合。因此,ENPP3通過分解UDP-GlcNAc,使得GnT-IX(GnT-Vb)酶的活性降低 (圖2) [12]。

圖2. ENPP3介導的UDP-GlcNAc水解 [12]
3.2 ENPP3在變態(tài)反應中的機制
FcεRI(IgE Fc受體,F(xiàn)c epsilon receptor I)是一種免疫受體,主要功能是介導變態(tài)反應。FcεRI與免疫球蛋白E(IgE)分子相互作用,并在特定類型的免疫細胞上表達,主要包括嗜堿性粒細胞(basophils)和肥大細胞(mast cells) [13]。當FcεRI交聯(lián)可引發(fā)即時或慢性過敏性炎癥,然而其具體機制仍然不清楚。
有關(guān)研究發(fā)現(xiàn),F(xiàn)cεRI交聯(lián)引發(fā)的ENPP3表達在慢性過敏性炎癥中起關(guān)鍵作用。在ENPP3基因缺陷小鼠中,嗜堿性粒細胞和肥大細胞增多,血液中的三磷酸腺苷(ATP,Adenosine Triphosphate)濃度增高,使得它們更容易患慢性過敏性疾病。此外,F(xiàn)cεRI交聯(lián)會導致這些細胞釋放ATP,但在ENPP3−/−的細胞中,ATP清除能力減弱,導致ATP在細胞內(nèi)積聚,觸發(fā)過敏性炎癥。因此,ENPP3可以減少ATP濃度并降低嗜堿性粒細胞和肥大細胞的活性,以抑制過敏性炎癥(圖3) [14]。

圖3. ENPP3抑制依賴于ATP的過敏性炎癥 [14]
4. ENPP3在各種過敏和腫瘤等疾病中的作用
4.1 ENPP3與過敏
4.1.1 嗜堿粒細胞ENPP3與過敏
嗜堿粒細胞和肥大細胞是參與變態(tài)反應的重要細胞。由于肥大細胞存在于組織中,而嗜堿粒細胞存在于血液循環(huán)中,因此,嗜堿粒細胞成為近年體外研究變態(tài)反應的突破點。CD63和ENPP3(CD203c)是目前發(fā)現(xiàn)嗜堿性粒細胞靈敏度和特異性最高的表面活化標記物 [15-16]。
研究發(fā)現(xiàn),激活狀態(tài)下,嗜堿粒細胞的ENPP3(CD203c)表達明顯上升,其診斷特異度和靈敏度高于CD63。過敏性哮喘患者在粉塵螨刺激后,嗜堿粒細胞的CD203c和CD63熒光強度顯著增加 [17];在乳膠和昆蟲毒液過敏的診斷中,檢測CD203c與CD63同樣可靠,但對于蜜蜂和黃蜂過敏患者,CD203c的靈敏度更高 [18-20];堅果過敏患者接受奧馬珠單抗(Omalizumab)治療后,嗜堿粒細胞的CD203c表達水平降低,表明奧馬珠通過阻斷IgE與嗜堿性粒細胞表面受體(FcεRI)結(jié)合來抑制嗜堿性粒細胞的活化 [21]。
另有研究發(fā)現(xiàn),通過使用CRTH2-FlTC、CD203c-PE和CD3-Per-CP這三種抗體,可以檢測嗜堿粒細胞表面的ENPP3(CD203c)表達水平,從而判斷蕁麻疹患者的血清是否能激活嗜堿粒細胞 [22]。蕁麻疹患者的血液中存在自身抗體,導致組胺釋放活性增加,其中大多數(shù)抗體是針對高親和力IgE受體(FceRl)的自身抗體,也有少數(shù)是針對IgE或其他抗體的。這些研究有助于我們了解慢性蕁麻疹的發(fā)病機制??偟膩碚f,ENPP3(CD203c)在不同過敏性疾病的診斷和治療中具有重要的潛力。
4.1.2 肥大細胞ENPP3與過敏
肥大細胞表達ENPP3(CD203c)分子,這一發(fā)現(xiàn)較晚引起關(guān)注。相關(guān)研究揭示,人臍帶血來源的CD34+造血干細胞培養(yǎng)的肥大細胞和人胃腸道中的肥大細胞都有ENPP3(CD203c) [23-24]。此外,肥大細胞增多癥患者的肥大細胞,CD203c表達上調(diào) [23-24]。因此,ENPP3(CD203c)可能是診斷肥大細胞相關(guān)疾病的標志物。
相關(guān)研究還發(fā)現(xiàn),抗腫瘤藥物米哚妥林(Midostaurin)能夠抑制人臍帶血來源的肥大細胞和人血液中嗜堿性粒細胞釋放介質(zhì),但不能抑制嗜堿性粒細胞上IgE依賴的ENPP3(CD203c)上調(diào)。此外,IgE交聯(lián)會使肥大細胞增多癥患者的肥大細胞CD203e上調(diào),但不影響干細胞因子(SCF)水平 [25-27]。此外,一氧化碳釋放分子CORM-3有強大的抗炎作用,但也會促進肥大細胞組胺釋放和ENPP3(CD203c)表達 [28-29]。
4.2 ENPP3與腫瘤
ENPP3被認為是一種腫瘤標志物,尤其在腎細胞癌(RCC)領(lǐng)域得到較多關(guān)注。在RCC中,ENPP3的表達明顯升高,使其成為新型抗體藥物偶聯(lián)物(ADC)的潛在治療靶標。這些ADC藥物研究包括AGS-16M8F和AGS-16C3F,它們結(jié)合了抗ENPP3抗體和毒性有效成分MMAF,能夠特異性地識別和摧毀RCC細胞,同時表現(xiàn)出持久的抗腫瘤活性和可控的不良反應。因此,探索新一代抗ENPP3抗體ADC藥物,可能為治療轉(zhuǎn)移性腎細胞癌提供新的治療途徑 [30]。
在卵巢癌中,有研究提示,卵巢子宮內(nèi)膜異位瘤中胞外酶ADA、ALP、ENPP1和ENPP3可作為子宮內(nèi)膜異位癥的候選生物標志物 [31]。在結(jié)腸癌細胞中,ENPP3高表達,且與腫瘤細胞的發(fā)生和轉(zhuǎn)移有關(guān) [32-33]。雖然ENPP3在多種癌癥中起著重要作用,但關(guān)于抑制ENPP3的藥物研究很有限。現(xiàn)有的抑制劑大多是核苷酸衍生物,但它們在人體內(nèi)的表現(xiàn)不符合藥物應有的性質(zhì)(如吸收、分布和排泄),因為它們可以在體內(nèi)分解并產(chǎn)生一些可能對嘌呤受體產(chǎn)生影響的代謝產(chǎn)物,而不是如預期般有效地抑制ENPP3酶的活性。因此,需要進一步研究ENPP3在腫瘤中的機制,以尋找更有效的抑制劑 [34-35]。
4.3 ENPP3與其它疾病
ENPPs異常表達可能導致骨質(zhì)礦化異常以及其他代謝性疾病的發(fā)生。例如,增加1,25(OH)2D水平可能通過維生素D受體(Vitamin D Receptor,VDR)在成熟成骨細胞和/或骨細胞上的作用,提高局部骨質(zhì)礦化抑制因子(如Enpp1、Enpp3和Ank)的水平 [36];ENPP3和GRIA2之間存在直接的物理相互作用,可能影響血管平滑肌細胞(Vascular Smooth Muscle Cells,VSMCs)的鈣信號和MAPK信號傳遞 [37]。
此外,在皮球囊擴張血管成形術(shù)(Percutaneous Transluminal Angioplasty,PTA)術(shù)后的動脈中,ENPP3和GRIA2的表達水平顯著上升,與再狹窄的嚴重程度相關(guān) [37]。ENPP3還參與調(diào)節(jié)呼吸道上皮的液體平衡,可能在肝臟中調(diào)節(jié)膽汁的形成和腦脊液的分泌。膽汁在肝臟中的形成和排泄對脂質(zhì)代謝和胰島素敏感性等方面都具有重要影響。因此,針對ENPP3抑制劑的研發(fā)可能有助于預防糖尿病 [38]。
5. ENPP3的臨床研究前景
ENPP3是一種廣泛參與核苷酸循環(huán)、磷脂信號調(diào)控、細胞運動和細胞增殖等多種生理過程的分子,其在變態(tài)反應疾病和腫瘤中的作用和價值正受到越來越多的關(guān)注。目前,已有一種靶向ENPP3的ADC抗體藥物AGS-16M8F正在進行I期臨床試驗,用于治療轉(zhuǎn)移性腎細胞癌(RCC),目前尚未公布臨床結(jié)果。此外,ENPP3(CD203c)標記的嗜堿性粒細胞激發(fā)試驗處于廣泛的臨床驗證階段。與CD63一樣,CD203c標記的嗜堿性粒細胞激發(fā)試驗或可用于診斷慢性蕁麻疹以及食物過敏等變態(tài)反應疾病。因此,ENPP3在變態(tài)反應疾病領(lǐng)域以及腎癌等腫瘤中的研究頗具前景,可能為相關(guān)患者帶來新的治療選擇和機會。
為鼎力協(xié)助科研和藥企人員針對ENPP3在能量代謝、變態(tài)反應、腫瘤相關(guān)疾病中的臨床應用研究,CUSABIO推出ENPP3活性蛋白(CSB-MP4278MOV; CSB-MP007681HU),助力您在ENPP3機制方面的研究或其潛在臨床價值的探索。
華美CUSABIO ENPP3 蛋白
● Recombinant Macaca fascicularis ENPP3, partial (Active)

The high purity is greater than 95% as determined by SDS-PAGE.

Immobilized Macaca fascicularis ENPP3 at 2 μg/ml can bind Anti-ENPP3 recombinant antibody (CSB-RA007681MA1HU), the EC50 is 3.313-4.724 ng/mL.
● Recombinant Human ENPP3, partial (Active)

The high purity is greater than 95% as determined by SDS-PAGE.

Immobilized Human ENPP3 at 2 μg/ml can bind anti-ENPP3 recombinant antibody (CSB-RA007681MA1HU), the EC50 is 2.151-2.492 ng/mL.
華美CUSABIO ENPP3 抗體
ENPP3 Recombinant Monoclonal Antibody

Untransfected and transfected HEK293T cells were stained with anti-ENPP3 antibody and analyzed using flow cytometry with FITC-labeled anti-Human IgG Fc antibody.
華美CUSABIO ENPP3 穩(wěn)定細胞系
HEK293T/Human ENPP3 Stable Cell Line

Untransfected and transfected HEK293T cells were stained with anti-ENPP3 antibody and analyzed using flow cytometry with FITC-labeled anti-Human IgG Fc antibody.
參考文獻:
[1] Fürstenau, Cristina Ribas, et al. "Ecto-nucleotide pyrophosphatase/phosphodiesterase as part of a multiple system for nucleotide hydrolysis by platelets from rats: kinetic characterization and biochemical properties." Platelets 17.2 (2006): 84-91.
[2] Iqbal, Jamshed. "Ectonucleotidases: potential target in drug discovery and development." Mini Reviews in Medicinal Chemistry 19.11 (2019): 866-869.
[3] Stella, Joséli, et al. "Differential ectonucleotidase expression in human bladder cancer cell lines." Urologic Oncology: Seminars and Original Investigations. vol. 28. no. 3. Elsevier, 2010.
[4] Bollen, Mathieu, et al. "Nucleotide pyrophosphatases/phosphodiesterases on the move." Critical reviews in biochemistry and molecular biology 35.6 ( 2000): 393-432.
[5] Ferrero, Enza, Angelo C. Faini, and Fabio Malavasi. "A phylogenetic view of the leukocyte ectonucleotidases." Immunology Letters 205 (2019): 51-58.
[6] Sakagami, Hideki, et al. "Biochemical and molecular characterization of a novel choline-specific glycerophosphodiester phosphodiesterase belonging to the nucleotide pyrophosphatase/phosphodiesterase family." Journal of Biological Chemistry 280.24 (2005): 23084-23093.
[7] Orriss, Isabel R., et al. "The regulation of osteoblast function and bone mineralization by extracellular nucleotides: the role of p2x receptors." Bone 51.3 (2012): 389-400.
[8] Vollmayer, Petra, et al. "Hydrolysis of diadenosine polyphosphates by nucleotide pyrophosphatases/phosphodiesterases." European journal of biochemistry 270.14 (2003): 2971-2978.
[9] Borza, Razvan, et al. "Structure and function of the ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP) family: tidying up diversity." Journal of Biological Chemistry 298.2 (2022).
[10] Goding, James W., Bert Grobben, and Herman Slegers. "Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/ phosphodiesterase family." Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1638.1 (2003): 1-19.
[11] Korekane, Hiroaki, et al. "Identification of ectonucleotide pyrophosphatase/phosphodiesterase 3 (ENPP3) as a regulator of N- acetylglucosaminyltransferase GnT-IX (GnT-Vb)." Journal of Biological Chemistry 288.39 (2013): 27912-27926.
[12] Taniguchi, Naoyuki, et al. "Identification of ectonucleotide pyrophosphatase/phosphodiesterase 3 as a new modifier of glycan biosynthesis (788.3). " The FASEB Journal 28 (2014): 788-3.
[13] Stone, Kelly D., Calman Prussin, and Dean D. Metcalfe. "IgE, mast cells, basophils, and eosinophils. "Journal of Allergy and Clinical Immunology 125.2 ( 2010): S73-S80.
[14] Tsai, Shih Han, et al. "The ectoenzyme E-NPP3 negatively regulates ATP-dependent chronic allergic responses by basophils and mast cells." Immunity 42.2 (2015): 279-293.
[15] Louren?o, F. D., et al. "Activated status of basophils in chronic urticaria leads to interleukin-3 hyper-responsiveness and enhancement of histamine release induced by anti-IgE stimulus." British Journal of Dermatology 158.5 (2008): 979-986.
[16] Bühring, Hans-J?rg, Anna Streble, and Peter Valent. "The basophil-specific ectoenzyme E-NPP3 (CD203c) as a marker for cell activation and allergy diagnosis." International archives of allergy and immunology 133.4 (2004): 317-329.
[17] Ono, Emiko, et al. "CD203c expression on human basophils is associated with asthma exacerbation." Journal of allergy and clinical immunology 125.2 (2010): 483-489.
[18] Eberlein-K?nig, B., et al. "Comparison of basophil activation tests using CD63 or CD203c expression in patients with insect venom allergy ." Allergy 61.9 (2006): 1084-1085.
[19] Bühring, Hans-J?rg, Anna Streble, and Peter Valent. "The basophil-specific ectoenzyme E-NPP3 (CD203c) as a marker for cell activation and allergy diagnosis." International archives of allergy and immunology 133.4 (2004): 317-329.
[20] Mikkelsen, Susan, et al. "Basophil sensitivity through CD63 or CD203c is a functional measure for specific immunotherapy." Clinical and Molecular Allergy 8 (2010): 1-9.
[21] Oda, Yoshiko, et al. "Improved FcεRI-mediated CD203c basophil responsiveness reflects rapid responses to omalizumab in chronic spontaneous urticaria." The Journal of Allergy and Clinical Immunology: In Practice 9.3 (2021): 1166-1176.
[22] Eberlein, Bernadette, et al. "Optimizing of the basophil activation test: comparison of different basophil identification markers." Cytometry Part B : Clinical Cytometry 88.3 (2015): 183-189.
[23] Reimer, J. M., et al. "Isolation of transcriptionally active umbilical cord blood-derived basophils expressing Fc?RI, HLA -DR and CD203c." Allergy 61.9 (2006): 1063-1070.
[24] Hauswirth, A. W., et al. "CD203c is overexpressed on neoplastic mast cells in systemic mastocytosis and is upregulated upon IgE receptor cross-linking. " International journal of immunopathology and pharmacology 21.4 (2008): 797-806.
[25] Kambe, Naotomo, et al. "Development of both human connective tissue-type and mucosal-type mast cells in mice from hematopoietic stem cells with identical distribution pattern to human body." Blood 103.3 (2004): 860-867.
[26] Krauth M T, Mirkina I, Herrmann H, et al. Midostaurin (PKC412) inhibits immunoglobulin E-dependent activation and mediator release in human blood basophils and mast cells[J]. Clinical & Experimental Allergy, 2009, 39(11): 1711-1720.
[27] Takagi, Shinsuke, et al. "Membrane-bound human SCF/KL promotes in vivo human hematopoietic engraftment and myeloid differentiation." Blood, The Journal of the American Society of Hematology 119.12 (2012): 2768-2777.
[28] Masini E, Vannacci A, Failli P, et al. A carbon monoxide-releasing molecule (CORM-3) abrogates polymorphonuclear granulocyte-induced activation of endothelial cells and mast cells[J]. The FASEB Journal, 2008, 22(9): 3380-3388.
[29] Vannacci A, Giannini L, Fabrizi F, et al. Effects of the carbon monoxide releasing molecule CORM-3 in a coincubation model of rat mast cells with human neutrophils[J]. Inflammation Research, 2007, 56: S13-S14.
[30] Do?ate F, Raitano A, Morrison K, et al. AGS16F is a novel antibody drug conjugate directed against ENPP3 for the treatment of renal cell carcinoma[J]. Clinical Cancer Research, 2016, 22(8): 1989-1999.
[31] Trapero C, Jover L, Fernández-Montolí M E, et al. Analysis of the ectoenzymes ADA, ALP, ENPP1, and ENPP3, in the contents of ovarian endometriomas as candidate biomarkers of endometriosis[J]. American Journal of Reproductive Immunology, 2018, 79(2): e12794.
[32] Chen L, Pan X, Hu X H, et al. G ene expression differences among different msi statuses in colorectal cancer[J]. International journal of cancer, 2018, 143(7): 1731-1740.
[33] Li J, Mo Y, Wei Q, et al. High Infiltration of CD203c+ Mast Cells Reflects Immunosuppression and Hinders Prognostic Benefit in Stage II-III Colorectal Cancer[J]. Journal of Inflammation Research, 2023: 723-735.
[34] Ullah S, El-Gamal M I, Zaib S, et al. Synthesis, biological evaluation, and docking studies of new pyrazole-based thiourea and sulfonamide derivatives as inhibitors of nucleotide pyrophosphatase/phosphodiesterase[J]. Bioorganic Chemistry, 2020, 99: 103783.
[35] Ullah S, El-Gamal M I, El-Gamal R, et al. Synthesis, biological evaluation, and docking studies of novel pyrrolo [2, 3-b] pyridine derivatives as both ectonucleotide pyrophosphatase/phosphodiesterase inhibitors and antiproliferative agents[J]. European Journal of Medicinal Chemistry, 2021, 217: 113339.
[36] Goltzman D. Inferences from genetically modified mouse models on the skeletal actions of vitamin D[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2015, 148: 219-224.
[37] Zhou M, Qi L, Gu Y. GRIA2/ENPP3 regulates the proliferation and migration of vascular smooth muscle cells in the restenosis process Post-PTA in lower extremity arteries[J]. Frontiers in Physiology, 2021, 12: 712400.
[38] Ullah S, Pelletier J, Sévigny J, et al. Synthesis and Biological Evaluation of Arylamide Sulphonate Derivatives as Ectonucleotide Pyrophosphatase/ Phosphodiesterase-1 and-3 Inhibitors[J]. ACS omega, 2022, 7(30): 26905-26918.