MYL9:肌球蛋白“細胞動力馬達”家族一員,癌細胞遷移動力靶點?
日期:2023-07-12 17:15:38
MYL9作為肌球蛋白的調(diào)節(jié)性輕鏈(myosin light chain,MLC),是激活肌球蛋白運動活性的關鍵環(huán)節(jié),為細胞運動提供動力。然而,細胞遷移是造成惡性腫瘤轉(zhuǎn)移的關鍵。多項研究表明,MYL9為癌細胞遷移提供動力,參與腫瘤的發(fā)生、發(fā)展。CD69被認為是淋巴細胞的早期激活標志物,最新研究闡明了一種新機制,MYL9可以作為CD69的配體,參與T細胞募集到炎癥性肺部 [1]。
此外,MYL9-CD69系統(tǒng)可誘導腫瘤微環(huán)境中的效應T細胞衰竭,并削弱抗腫瘤免疫反應。通過阻斷MYL9和CD69之間的相互作用,有利于保持較高的抗腫瘤免疫反應 [2]。因此,MYL9作為肌球蛋白“細胞動力馬達”家族一員,可能是癌癥免疫治療的下一個新藥物靶點!
1. 什么是肌球蛋白?
肌球蛋白是一類高度保守的蛋白,是細胞骨架的重要組成部分,也是基于肌動蛋白依賴性的分子馬達。肌球蛋白約占人體總蛋白的15%~25%,主要存在平滑肌中,其家族比較大,目前已發(fā)現(xiàn)人40個肌球蛋白基因,分別代表12類的超大家族(I-XII)。肌球蛋白的分子結構包括重鏈(myosin heavy chain,MHC)和輕鏈(myosin light chain,MLC),輕鏈又分為基礎性MLC(MLC I)和調(diào)節(jié)性MLC(MLC II)。肌球蛋白是一種多功能蛋白質(zhì),在細胞的變形、黏附、運動及細胞的遷移方面有巨大的作用,被稱為“細胞動力的馬達”(圖1) [3-6]。
2. 什么是MYL9?
肌球蛋白監(jiān)管輕鏈MYL9(myosin regulatory light chain 9,又稱MLC2, MRLC1或MLC-2C)是組成肌球蛋白的調(diào)節(jié)性輕鏈。人MYL9基因位于染色體20q11.23上,包含8621個堿基,8個內(nèi)含子和17個外顯子。它編碼的20KD肌球蛋白監(jiān)管輕鏈,是肌球蛋白的重要組成部分。肌球蛋白按區(qū)域分為頭部、頸部和尾部。頭部是球形,含有ATP結合和肌動蛋白結合部位,用于催化ATP的水解釋放化學能量,并與肌動蛋白結合。頸部有兩條調(diào)節(jié)性輕鏈纏繞成α螺旋狀,可結合肌球蛋白輕鏈和鈣調(diào)素。尾部是卷曲的螺旋結構,含有羥基 (圖2)[7]。
MYL9在正常組織及腫瘤組織中均廣泛表達,如肌肉組織、內(nèi)臟組織、肺癌、前列腺癌等。迄今為止,已有大量研究表明,MYL9作為肌球蛋白的關鍵成員,通過多種調(diào)節(jié)因子參與生物體內(nèi)諸多的功能,如肌肉運動,細胞遷移,細胞內(nèi)吞,有絲分裂和信號轉(zhuǎn)導等,尤其在腫瘤細胞的遷移和增殖中發(fā)揮著重要的作用 [8-11]。

圖2. MYL9是肌球蛋白“細胞動力馬達”關鍵成員 [7]
3. MYL9相關的信號通路
MYL9主要通過兩大系統(tǒng)起到調(diào)控的作用:1)Rho肌酶(rho-kinase, ROCK)系統(tǒng);2)肌球蛋白輕鏈肌酶(myosin light chain kinase, MLCK)系統(tǒng)。除了這兩個系統(tǒng)之外,還涉及鈣調(diào)蛋白依賴的蛋白激酶II、ILK、PKA、ZIPK、PKC以及肌球蛋白輕鏈磷酸酶MLCP抑制分子CP17等相關重要分子 [12-14]。
如圖3所示,MLCK和ROCK系統(tǒng)激活,并與鈣離子Ca2+結合,增加細胞內(nèi)鈣離子Ca2+濃度,又可以激活肌球蛋白輕鏈肌酶活性和MYL9的磷酸化。具體而言,ROCK是肌球蛋白輕鏈的最直接底物之一,其介導MYL9基因的磷酸化及去磷酸化作用。此外,ROCK可促進細胞內(nèi)Ca2+濃度的增加,通過激活Ca2+/鈣調(diào)蛋白依賴的MLCK,在MLCK的作用下引起MYL9的磷酸化 [12]。
MYL9的磷酸化增強肌球蛋白和肌動蛋白之間的相互作用,以及肌球蛋白輕鏈頭部ATP酶的活性,從而促進細胞骨架的重構,并增加細胞的增殖、分化、粘附和遷移的能力。RhoA抑制因子能有效的直接抑制其下游的效應蛋白Rock,從而對MYL9的表達和磷酸化作用起抑制作用,進而抑制腫瘤細胞肌動蛋白形成等生物學行為,同時對腫瘤的侵襲、轉(zhuǎn)移和生長也起抑制作用 [12]。

圖3. MYL9主要通過MLCK和ROCK兩大系統(tǒng)起到調(diào)控的作用 [12]
4. MYL9在腫瘤等疾病中的作用
許多研究表明,MYL9通過磷酸化和去磷酸化調(diào)節(jié)ATP酶活性以及肌球蛋白的收縮,從而控制細胞的運動、黏附和變形等功能。惡性腫瘤的特點之一是浸潤性生長和遠處轉(zhuǎn)移,這表明與細胞運動相關的分子MYL9異常表達可能影響腫瘤的發(fā)展。許多研究已經(jīng)報道了MYL9參與腫瘤發(fā)病機制,不僅能抑制腫瘤,同時也能促進腫瘤生長 [15-17]。
4.1 MYL9和腫瘤
4.1.1 MYL9促進腫瘤
MYL9在多種腫瘤中呈現(xiàn)增加的表達和磷酸化水平。在乳腺癌和肝癌中,MYL9主要通過促進腫瘤細胞運動來促使腫瘤發(fā)生侵襲 [18-19]。此外,在膠質(zhì)母細胞瘤中,MYL9的表達量和磷酸化水平也有所增加。高水平的MYL9表達與膠質(zhì)母細胞瘤患者預后較差以及復發(fā)性膠質(zhì)母細胞瘤患者中MYL9表達增加相關聯(lián) [8]。另外,胰腺導管腺癌和卵巢上皮性腫瘤中也觀察到MYL9的增加表達。臨床數(shù)據(jù)分析提示MYL9可作為胰腺導管腺癌和卵巢上皮性腫瘤的獨立預后因素 [14, 20]。
同樣地,食管鱗狀細胞癌細胞系中MYL9呈顯著上調(diào),并且與腫瘤細胞中MYL9表達高的患者總生存期和無復發(fā)生存期較差相關 [21]。此外,高表達MYL9促進骨肉瘤的進展 [22]。綜上所述,這些研究結果表明MYL9可能通過促進腫瘤細胞運動影響腫瘤的生長和侵襲轉(zhuǎn)移,并且可能成為多種腫瘤的預后標志物和治療靶點。
4.1.2 MYL9抑制腫瘤
但與之相反的是,基于微陣列和蛋白質(zhì)組學分析,發(fā)現(xiàn)MYL9蛋白在前列腺組織中表達下降,與年齡、病理分期、轉(zhuǎn)移和PSA水平等相關 [23]。類似地,在膀胱癌和胃癌中也觀察到MYL9表達下調(diào) [24-25]。然而,進一步的細胞實驗證明,MYL9缺乏減少了胃癌細胞的增殖并增強了細胞凋亡 [15]。在人類結直腸癌中,MYL9的表達和磷酸化水平降低 [26]。細胞實驗證實,通過上調(diào)MYL9,可以抑制腫瘤細胞的增殖、侵襲和遷移,并促進結腸癌干細胞的凋亡 [27-28]。
生物信息學分析發(fā)現(xiàn),低MYL9表達可能與非小細胞肺癌的發(fā)展和轉(zhuǎn)移有關 [29-30]。在乳腺癌中,MYL9的上調(diào)顯著降低了癌細胞的運動能力 [15]。然而,一些文獻提出MYL9在分子水平上的表達增加了乳腺癌細胞的遷移 [15, 31]。根據(jù)目前的文獻,MYL9在惡性腫瘤中的作用存在爭議??傮w而言,MYH9在腫瘤中的作用復雜多樣,可能成為治療靶點和預后評估的重要指標。
4.2 MYL9和其它疾病
MYL9不僅與腫瘤相關,還在心血管、炎癥和神經(jīng)系統(tǒng)等疾病中發(fā)揮作用 [32-35]。動脈粥樣硬化模型顯示,隨著斑塊增加,MYL9表達顯著下調(diào)。MYL9受到血管緊張素II(Angiotensin II/AGT)和細胞因子PDGF-BB的刺激下調(diào)。血管緊張素II和PDGF-BB是重要的細胞因子,在血管損傷過程中促進平滑肌細胞增殖和遷移。因此,MYL9可能在動脈粥樣硬化的發(fā)展中起重要作用 [36-37]。
陸續(xù)的報道表明MYL9蛋白是CD69分子的新配基,MYL9-CD69系統(tǒng)參與調(diào)節(jié)免疫應答 [2, 38-41]。阻斷MYL9-CD69之間的互動可改善實驗鼠的過敏性呼吸道炎癥,如哮喘 [2];在炎癥時,血管受損并導致血小板活化,進而產(chǎn)生MYL9網(wǎng)絡結構和各種凝血因子,接著MYL9能夠與CD69陽性的特異性T細胞結合,促使免疫細胞聚集到炎癥部位,并產(chǎn)生效應細胞因子和趨化因子,從而有效激活免疫反應(圖4) [41]。

圖4. MYL9-CD69系統(tǒng)參與調(diào)節(jié)免疫應答 [42]
5. MYL9的臨床研究前景
MYL9在肺癌、乳腺癌、前列腺癌、胃癌等多種不同類型的惡性腫瘤中均有異常表達,并且往往與不良預后密切相關,其表達的臨床意義根據(jù)癌組織的不同而不同。更值得關注的是,MYL9可能作為CD69新配體,兩者的相互作用促進CTL的滯留,使其受到腫瘤抗原的慢性刺激而導致T細胞衰竭。在腫瘤微環(huán)境中,抗原特異性細胞毒性T細胞(cytotoxic lymphocytes,CTL)是機體抗腫瘤免疫的重要防線。這意味著抗MYL9/CD69可能是癌癥免疫療法的理想治療靶點。
目前,國內(nèi)外針對MYL9抗癌的臨床實踐經(jīng)驗尚淺,但其作為各類腫瘤治療的靶標的可能性已得到了越來越多的證據(jù)支持。因此,MYL9作為分子標志物和潛在的靶標,在惡性腫瘤的早期診斷、預后預測以及靶向治療中將具有極大的臨床應用價值。
為鼎力協(xié)助科研和藥企人員針對MYL9在腫瘤等疾病中的臨床應用研究,CUSABIO推出MYL9活性蛋白(Code: CSB-YP015318HU)產(chǎn)品,助力您在MYL9機制方面的研究或其潛在臨床價值的探索。(點擊查看MYL9系列產(chǎn)品: MYL9蛋白; MYL9抗體)
Recombinant Human Myosin regulatory light polypeptide 9(MYL9) (Active) (Code: CSB-YP015318HU)

The Greater than 95% as determined by SDS-PAGE. (Tris-Glycine gel) Discontinuous SDS-PAGE (reduced) with 5% enrichment gel and 15% separation gel.

Immobilized Human MYL9 at 2μg/mL can bind Anti-MYL9 recombinant antibody (CSB-RA015318MA1HU), the EC50 is 4.628-6.430 ng/mL.
參考文獻:
[1] Iwamura, Chiaki, et al. "Elevated Myl9 reflects the Myl9-containing microthrombi in SARS-CoV-2-induced lung exudative vasculitis and predicts COVID-19 severity." Proceedings of the National Academy of Sciences 119.33 (2022): e2203437119.
[2] Kimura, Motoko Y., et al. "A new therapeutic target: the CD69-Myl9 system in immune responses." Seminars in immunopathology. vol. 41. Springer Berlin Heidelberg, 2019.
[3] Sellers, James R. "Myosins: a diverse superfamily." Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1496.1 (2000): 3-22.
[4] Fitz, Gillian N., et al. "Protrusion growth driven by myosin-generated force." Developmental Cell 58.1 (2023): 18-33.
[5] Hartman, M. Amanda, and James A. Spudich. "The myosin superfamily at a glance. "Journal of cell science 125.7 (2012): 1627-1632.
[6] Lewis, Christopher TA, and Julien Ochala. "Myosin heavy chain as a novel key modulator of striated muscle resting state. "Physiology 38.1 (2023): 3-9.
[7] Bhanu P. Jena. "Myosin: Cellular Molecular Motor" Cellular Nanomachines (2020): 79-89.
[8] Kruthika, Banavathy S., et al. "Expression pattern and prognostic significance of myosin light chain 9 (MYL9): a novel biomarker in glioblastoma." Journal of Clinical Pathology 72.10 (2019): 677-681.
[9] Shehadeh, Lina A., et al. "Dynamic regulation of vascular myosin light chain (MYL9) with injury and aging." PLoS One 6.10 (2011): e25855.
[10] Zhu, Kongxi, et al. "Long non-coding RNA MBNL1-AS1 regulates proliferation, migration, and invasion of cancer stem cells in colon cancer by interacting with MYL9 via sponging microRNA-412-3p." Clinics and research in hepatology and gastroenterology 44.1 (2020): 101-114.
[11] Jalagadugula, Gauthami, et al. "Regulation of platelet myosin light chain (MYL9) by RUNX1: implications for thrombocytopenia and platelet dysfunction in RUNX1 haplodeficiency." Blood, The Journal of the American Society of Hematology 116.26 (2010): 6037-6045.
[12] Moreno, Carolina Araujo, et al. "Homozygous deletion in MYL9 expands the molecular basis of megacystis-microcolon- intestinal hypoperistalsis syndrome." European Journal of Human Genetics 26.5 (2018): 669-675.
[13] Licht, Alexander H., et al. "Junb regulates arterial contraction capacity, cellular contractility, and motility via its target Myl9 in mice." The Journal of clinical investigation 120.7 (2010): 2307-2318.
[14] Matsushita, Katsunori, et al. "Clinicopathological significance of MYL9 expression in pancreatic ductal adenocarcinoma." Cancer Reports 5.10 (2022 ): e1582.
[15] Lv, Minghe, Lumeng Luo, and Xue Chen. "The landscape of prognostic and immunological role of myosin light chain 9 (MYL9) in human tumors." Immunity. Inflammation and Disease 10.2 (2022): 241-254.
[16] Gilles, Laure, et al. "MAL/SRF complex is involved in platelet formation and megakaryocyte migration by regulating MYL9 (MLC2) and MMP9." Blood, The Journal of the American Society of Hematology 114.19 (2009): 4221-4232.
[17] Tan, Xiang, and Mingwu Chen. "MYLK and MYL9 expression in non-small cell lung cancer identified by bioinformatics analysis of public expression data." Tumor Biology 35 (2014): 12189-12200.
[18] Luo, Xue-Gang, et al. "Histone methyltransferase SMYD3 promotes MRTF-A-mediated transactivation of MYL9 and migration of MCF-7 breast cancer cells." Cancer letters 344.1 (2014): 129-137.
[19] Hirasawa, Yuichi, et al. "Methylation status of genes upregulated by demethylating agent 5-aza-2′-deoxycytidine in hepatocellular carcinoma." Oncology 71.1-2 (2007): 77-85.
[20] Deng, Yuao, et al. "High expression of MYL9 indicates poor clinical prognosis of epithelial ovarian cancer." Recent Patents on Anti-Cancer Drug Discovery 16.4 (2021): 533-539.
[21] Wang, Jian-Hua, et al. "Expression and prognostic significance of MYL9 in esophageal squamous cell carcinoma." ploS one 12.4 (2017): e0175280.
[22] Zhao, S., W. Xiong, and K. Xu. "MiR-663a, regulated by lncRNA GAS5, contributes to osteosarcoma development through targeting MYL9. "Human & Experimental Toxicology 39.12 (2020): 1607-1618.
[23] Huang, Ya-qiang, et al. "Decreased expression of myosin light chain MYL9 in stroma predicts malignant progression and poor biochemical recurrence- free survival in prostate cancer." medical oncology 31 (2014): 1-9.
[24] Huang, Chu-Han, et al. "MYL9 deficiency is neonatal lethal in mice due to abnormalities in the lung and the muscularis propria of the bladder and intestine ." Plos one 17.7 (2022): e0270820.
[25] Dong, Ningxin, et al. "Identification and validation of critical genes with prognostic value in gastric cancer." Frontiers in Cell and Developmental Biology 10 (2022): 1072062.
[26] Qiu, Xiao, et al. "Weighted gene co-expression network analysis identified MYL9 and CNN1 are associated with recurrence in colorectal cancer." journal of Cancer 11.8 (2020): 2348.
[27] Zhou, Rui, et al. "PRPF19 facilitates colorectal cancer liver metastasis through activation of the Src-YAP1 pathway via K63-linked ubiquitination of MYL9." Cell Death & Disease 14.4 (2023): 258.
[28] Feng, Min, et al. "Myosin light chain 9 promotes the proliferation, invasion, migration and angiogenesis of colorectal cancer cells by binding to Yes- associated protein 1 and regulating Hippo signaling." Bioengineered 13.1 (2022): 96-106.
[29] Sheng, Meiling, Zhaohui Dong, and Yanping Xie. "Identification of tumor-educated platelet biomarkers of non-small-cell lung cancer. "OncoTargets and therapy (2018): 8143-8151.
[30] Tan, Xiang, and Mingwu Chen. "MYLK and MYL9 expression in non-small cell lung cancer identified by bioinformatics analysis of public expression data." Tumor Biology 35 (2014): 12189-12200.
[31] Zhang, Chunling, et al. "Myocardin-related transcription factor A is up-regulated by 17β-estradiol and promotes migration of MCF-7 breast cancer cells via transactivation of MYL9 and CYR61." Acta Biochim Biophys Sin 45.11 (2013): 921-927.
[32] Kandler, Justin L., et al. "Compound heterozygous loss of function variants in MYL9 in a child with megacystis-microcolon intestinal hypoperistalsis syndrome." Molecular Genetics & Genomic Medicine 8.11 (2020): e1516.
[33] Kobayashi, Hironobu, et al. "Increased Myosin light chain 9 expression during Kawasaki disease vasculitis." Frontiers in Immunology 13 (2023). 1036672.
[34] Xiong, Yao, et al. "Targeting MRTF/SRF in CAP2-dependent dilated cardiomyopathy delays disease onset." jci insight 4.6 (2019).
[35] Sun, L., et al. "Decreased platelet expression of myosin regulatory light chain polypeptide (MYL9) and other genes with platelet dysfunction and CBFA2/ RUNX1 mutation: insights from platelet expression profiling." Journal of Thrombosis and Haemostasis 5.1 (2007): 146-154.
[36] Wen, Dingke, et al. "Single-cell RNA sequencing reveals the pathogenic relevance of intracranial atherosclerosis in blood blister-like aneurysms." Frontiers in Immunology 13 (2022): 927125.
[37] Hwang, Ki-Chul. "The Role of MicroRNAs in Vascular Diseases; Smooth Muscle Cell Differentiation and De-Differentiation. "Korean Circulation Journal 44.4 (2014): 218-219.
[38] Hayashizaki, Koji, et al. "Myosin light chains 9 and 12 are functional ligands for CD69 that regulate airway inflammation." science immunology 1.3 (2016 ): eaaf9154-eaaf9154.
[39] Nakayama, Toshinori, et al. "CD4+ T cells in inflammatory diseases: pathogenic T-helper cells and the CD69-Myl9 system." International Immunology 33.12 (2021): 699-704.
[40] Yokoyama, Masaya, et al. "Myosin light chain 9/12 regulates the pathogenesis of inflammatory bowel disease." Frontiers in Immunology 11 (2021): 594297.
[41] Onodera, Atsushi, Kota Kokubo, and Toshinori Nakayama. "Epigenetic and transcriptional regulation in the induction, maintenance, heterogeneity and recall-response of effector and memory Th2 cells." Frontiers in Immunology 9 (2018): 2929.