Serotransferrin/TF:血液中的鐵轉(zhuǎn)運(yùn)蛋白,新型納米藥物研究潛力靶點!
日期:2024-02-07 11:57:59
2024年1月,Scholar數(shù)據(jù)庫收錄了一篇名為“Remyelinating effect driven by transferrin-loaded extracellular vesicles”的研究論文 [1]。該研究旨在評估利用細(xì)胞外囊泡(EVs)作為轉(zhuǎn)鐵蛋白(Transferrin,Tf)的載體,通過鼻腔途徑將Tf輸送到中樞神經(jīng)系統(tǒng)(CNS)的可行性。結(jié)果顯示,EV Tf通過胞吞作用的途徑,進(jìn)入神經(jīng)膠質(zhì)細(xì)胞(OPCs),釋放出Tf,從而促進(jìn)OPCs的成熟,進(jìn)一步揭示了EVs作為TF的功能性納米載體,能夠誘導(dǎo)髓鞘再生。近年來,Serotransferrin/TF修飾的納米新型藥物正成為研究癌癥治療的熱門方向之一,它將藥物通過載體方式(如外泌體)納入到遞送系統(tǒng)中,靶向癌細(xì)胞中高表達(dá)的生物靶點。今天,讓我們一起了解下這個體液主要的轉(zhuǎn)鐵蛋白Tf,以及它在疾病研究中的應(yīng)用潛力!
1. 什么是血清轉(zhuǎn)鐵蛋白(Serotransferrin,Tf)?
1.1 血清轉(zhuǎn)鐵蛋白的結(jié)構(gòu)
血清轉(zhuǎn)鐵蛋白(Serotransferrin,又稱轉(zhuǎn)鐵蛋白Transferrin或TRF、Tf)是血漿中的一種β球蛋白,也是血液中主要的鐵轉(zhuǎn)運(yùn)蛋白。血清轉(zhuǎn)鐵蛋白最早由Holmberg和Laurell兩位研究者發(fā)現(xiàn)的,由679個氨基酸殘基構(gòu)成,分子量約為79kD,由兩個具有高度同源性結(jié)構(gòu)的N端結(jié)構(gòu)域(336個氨基酸殘基)和C端結(jié)構(gòu)域(343個氨基酸殘基)構(gòu)成。每個Tf能結(jié)合兩個金屬離子,可與金屬離子Fe3+、Cu2+、Co3+、Cr3+等結(jié)合,其中與Fe3+結(jié)合能力強(qiáng),但不能與Fe2+結(jié)合。Fe3+分別與結(jié)構(gòu)域中2個酪氨酸、1個天冬氨酸和1個組氨酸結(jié)合,形成一個穩(wěn)定的八面體結(jié)構(gòu)(圖1) [2-4]。
1.2 血清轉(zhuǎn)鐵蛋白的表達(dá)和功能
TF是一種特異性結(jié)合并轉(zhuǎn)運(yùn)鐵的糖蛋白,廣泛存在于多種組織和器官中。血液循環(huán)中的轉(zhuǎn)鐵蛋白主要由肝臟細(xì)胞合成,同時支持細(xì)胞、室管膜、少突神經(jīng)膠質(zhì)細(xì)胞等組織細(xì)胞也能合成少量的轉(zhuǎn)鐵蛋白。機(jī)體內(nèi)除了血清含有轉(zhuǎn)鐵蛋白外,其他體液中也包含一定量的轉(zhuǎn)鐵蛋白,如血漿、腦脊液、膽汁、淋巴液、羊水和乳汁。在沒有受到其它因素刺激的情況下,血清中的轉(zhuǎn)鐵蛋白濃度非常穩(wěn)定 [5-7]。
Tf提供了機(jī)體中絕大部分的鐵,其主要生理功能就是把鐵輸送到成紅血細(xì)胞,以用于血紅蛋白的合成,或者將三價鐵離子從吸收和儲蓄的地方運(yùn)輸?shù)狡渌梃F部位。然而,鐵離子的缺乏或過載同樣會引起機(jī)體組織器官的損傷。因此,維持鐵離子平衡是維持生命活動的關(guān)鍵之一。在這個過程中,轉(zhuǎn)鐵蛋白Tf發(fā)揮著決定性的作用,其通過協(xié)調(diào)多種蛋白來實現(xiàn)鐵離子平衡。TF還與一些細(xì)胞生長分化有關(guān),包括營養(yǎng)肌肉、胚胎形成、細(xì)胞增殖、有絲分裂、趨化和血管形成等等 [8-10]。

圖1. Tf結(jié)構(gòu)示意圖 [2]
2. 血清轉(zhuǎn)鐵蛋白TF相關(guān)的作用機(jī)制是什么?
2.1 TF通過受體介導(dǎo)細(xì)胞內(nèi)吞攝取鐵離子
TF能與細(xì)胞膜上的轉(zhuǎn)鐵蛋白受體(Transferrin Receptor,TFR)相結(jié)合,通過細(xì)胞內(nèi)吞作用,使有鐵的TF-TFR復(fù)合體進(jìn)入細(xì)胞。載有鐵的TF-TFR復(fù)合體內(nèi)化后變?yōu)閮?nèi)含體,由于內(nèi)含體膜上質(zhì)子泵介導(dǎo)的pH下降,Tf的構(gòu)像發(fā)生變化,導(dǎo)致Fe3+從TF上釋放,在內(nèi)含體內(nèi)的鐵還原酶催化下使Fe3+轉(zhuǎn)變?yōu)镕e2+。然后,在二價金屬離子轉(zhuǎn)運(yùn)體(Divalent metal transporter 1,DMT1)的作用下,F(xiàn)e2+進(jìn)入細(xì)胞質(zhì)與鐵蛋白(Ferritin heavy chain 1,FTH1)結(jié)合儲存。Tf-TFR復(fù)合體通過受體介導(dǎo)的內(nèi)吞是細(xì)胞攝取鐵的主要方式,這一途徑不僅有效用于運(yùn)送抗癌藥物和蛋白,還可將治療基因藥物傳遞到過表達(dá)TR的腫瘤細(xì)胞(圖2) [11-12]。
(您可瀏覽相關(guān)文章:轉(zhuǎn)鐵蛋白受體TFR1(TFRC):鐵穩(wěn)態(tài)關(guān)鍵成員,貧血、神經(jīng)退行性疾病、癌癥新銳靶點!)

圖2. TF通過受體介導(dǎo)細(xì)胞內(nèi)吞攝取鐵離子 [11]
2.2 TF促腫瘤細(xì)胞對鐵死亡的敏感性
鐵代謝在細(xì)胞鐵死亡中扮演關(guān)鍵角色,過多的游離鐵離子可能引發(fā)自由基產(chǎn)生,導(dǎo)致氧化應(yīng)激、DNA損傷和脂質(zhì)過氧化等,最終導(dǎo)致細(xì)胞死亡。一項研究調(diào)查了一組骨髓瘤患者其外周血標(biāo)本中與鐵代謝相關(guān)的指標(biāo),盡管鐵含量正常,但轉(zhuǎn)鐵蛋白減少、鐵蛋白增多。轉(zhuǎn)鐵蛋白減少提示細(xì)胞內(nèi)鐵降低,而鐵蛋白增多表明細(xì)胞內(nèi)鐵以無毒方式儲存。此外,研究發(fā)現(xiàn)通過增加轉(zhuǎn)鐵蛋白含量,再使用Erastin處理骨髓瘤MM細(xì)胞時,轉(zhuǎn)鐵蛋白顯著提高了細(xì)胞對Erastin的敏感性,顯著降低了MM細(xì)胞增殖能力,且這種敏感性與細(xì)胞內(nèi)鐵含量正相關(guān)。因此,提高轉(zhuǎn)鐵蛋白的含量有助于促進(jìn)MM細(xì)胞對Erastin誘導(dǎo)的鐵死亡的易感性 [13-14]。
3. TF和疾病相關(guān)的研究
近年來,TF常常被報道用于腫瘤靶向治療,尤其是Tf修飾的納米藥物被廣泛應(yīng)用于藥物釋放體系(Drug Delivery System,DDS)。DDS是指利用高分子聚合物、脂質(zhì)體、外泌體和金屬氧化物等納米材料作為藥物載體制成的藥物制劑,能夠控制藥物在人體內(nèi)環(huán)境中持續(xù)釋放。這使得藥物能夠在目標(biāo)組織或病區(qū)維持一定時間,為疾病治療提供更有效的研究手段。
3.1 TF和肝癌研究
一項研究發(fā)現(xiàn),采用Transferrin(Tf)修飾的阿霉素脂質(zhì)體(Tf-SL-DOX),Tf-SL-DOX可使靶器官的阿霉素濃度明顯增高。體外細(xì)胞毒實驗結(jié)果表明,與阿霉素脂質(zhì)體(SL-DOX)相比,Tf-SL-DOX的IC50為20.4μmol/L,SL-DOX的IC50為166.2μmol/L,兩者相比有顯著性差異(P<0.01),SL-DOX對體外HepG2肝癌細(xì)胞有高效殺傷作用。尾靜脈注射Tf-SL-DOX,腫瘤生長速度較模型組明顯減慢,抑瘤率達(dá)67%,證明Tf-SL-DOX能顯著抑制腫瘤組織的生長,提示Tf-SL-DOX對肝癌細(xì)胞具有較好的靶向作用和較低的心臟毒副作用 [15-18]。
3.2 TF和乳腺癌研究
在綠色熒光發(fā)射碳點GCD上引入TF修飾,將阿霉素DOX與GCD結(jié)合形成GCD-PEG-Tf@DOX。用GCD-PEG-Tf@DOX處理乳腺癌細(xì)胞MCF-7時,其通過靶向TR過表達(dá)的癌細(xì)胞實現(xiàn)精準(zhǔn)給藥。共聚焦顯微鏡顯示,在TfR表達(dá)較高的MCF-7細(xì)胞中,GCD-PEG-Tf@DOX熒光強(qiáng),而在TfR表達(dá)較低的CHO細(xì)胞中熒光較弱。因此,GCD-PEG-Tf@DOX能準(zhǔn)確靶向TfR過表達(dá)的乳腺癌細(xì)胞。細(xì)胞毒性實驗證明,GCD-PEG-Tf@DOX的細(xì)胞毒性具有時間和濃度依賴性,處理后的細(xì)胞狀態(tài)與游離的DOX相似,說明GCD-PEG-Tf@DOX不會降低DOX的細(xì)胞毒性。向腫瘤小鼠注射GCD-PEG-Tf@DOX,發(fā)現(xiàn)Tf納米藥物顯著抑制腫瘤生長,小鼠體重?zé)o明顯變化,表明GCD-PEG-Tf@DOX副作用小且具有良好的靶向能力 [19-22]。
3.3 TF和前列腺癌研究
一項研究分析了轉(zhuǎn)鐵蛋白、clusterin和轉(zhuǎn)甲狀腺素蛋白在前列腺正常、增生、癌組織中的表達(dá)和意義。結(jié)果顯示,Tf在前列腺癌組織中的表達(dá)明顯高于良性前列腺增生組和正常前列腺組。在前列腺癌組中陽性達(dá)94%。進(jìn)一步研究發(fā)現(xiàn),其表達(dá)陽性率與前列腺癌病理分級和臨床分期均呈線性正相關(guān),提示Tf在前列腺癌組織中同樣有高表達(dá)且陽性率較高,與Tf在血清中的表達(dá)結(jié)果一致。因此,研究者認(rèn)為Tf是前列腺癌血清中差異表達(dá)蛋白質(zhì),其參與前列腺癌的發(fā)展過程可以作為病情進(jìn)展和評價治療的指標(biāo) [23-25]。
3.4 TF和其它腫瘤等疾病研究
一些研究報道表明,在神經(jīng)膠質(zhì)瘤、肺腺癌、卵巢癌、慢性淋巴細(xì)胞白血病等惡性程度高及易轉(zhuǎn)移的腫瘤中,Tf也存在異常表達(dá) [26-29]。例如,研究者發(fā)現(xiàn)HP+Tf+CEA聯(lián)合運(yùn)用,能提高早期卵巢上皮癌診斷特異性和靈敏度,有助于提高CA125陰性卵巢上皮癌的檢出率 [30]。此外,在一項研究中,研究者設(shè)計了Tf-5-ALA-PTX-NCs納米平臺,結(jié)合了化學(xué)和光動力治療,通過磁靶向效應(yīng)和TR的主動靶向,提高了腫瘤靶向能力。實驗證明,該平臺在體內(nèi)外實現(xiàn)了腫瘤特異性靶向和協(xié)同治療的抗腫瘤效果 [31]。
腹膜透析相關(guān)性腹膜炎(PDAP)研究發(fā)現(xiàn),PDAP患者普遍存在鐵代謝紊亂,且血清鐵、鐵蛋白、轉(zhuǎn)鐵蛋白是PDAP發(fā)生的危險因素 [32]。另外,低水平的轉(zhuǎn)鐵蛋白與貧血發(fā)病率增加相關(guān) [33]。在感染時,TF通過形成轉(zhuǎn)鐵蛋白螯合復(fù)合物抑制細(xì)菌、病毒及真菌的生長,為抗感染藥物研究提供新方向 [34]。
4. TF的臨床藥物研究前景
轉(zhuǎn)鐵蛋白TF作為一種特異性結(jié)合并轉(zhuǎn)運(yùn)鐵的糖蛋白,在臨床藥物研究中呈現(xiàn)廣泛前景。以往報道表明,TF可作為腫瘤治療的靶向配體,實現(xiàn)腫瘤特異性治療,還結(jié)合協(xié)同化療和光動力療法顯著抑制腫瘤生長,降低毒副作用。此外,TF修飾的脂質(zhì)體作為改進(jìn)的藥物載體,通過攜帶逆轉(zhuǎn)多藥耐藥的藥物和抗腫瘤藥物實現(xiàn)靶向輸送,提高藥物濃度,減少正常組織毒副作用。TF還能抑制微生物生長為抗感染藥物提供新方向。同時,低水平的轉(zhuǎn)鐵蛋白與貧血發(fā)病率增加相關(guān)??傮w而言,TF的研究為抗感染,尤其是腫瘤方面的研究提供了多層面的應(yīng)用前景。
為鼎力協(xié)助各藥企針對血清轉(zhuǎn)鐵蛋白TF在抗感染、貧血、腫瘤等疾病在臨床中的研究,華美CUSABIO推出血清轉(zhuǎn)鐵蛋白TF(CSB-MP023412HU)活性蛋白產(chǎn)品,助力您在對血清轉(zhuǎn)鐵蛋白TF機(jī)制方面的研究或其潛在臨床價值的探索。
華美 血清轉(zhuǎn)鐵蛋白Serotransferrin(TF)
Recombinant Human Serotransferrin(TF) (Active) Code: CSB-MP023412HU

Purity was greater than 95% as determined by SDS-PAGE.

Immobilized TFRC(CSB-MP3648HU)at 2μg/mL can bind Human TF. The EC50 is 58.72-77.84 ng/mL.
參考文獻(xiàn):
[1] Mattera, Vanesa, et al. "Remyelinating effect driven by transferrin‐loaded extracellular vesicles." Glia 72.2 (2024): 338-361.
[2] Koneru, Tejaswi, et al. "Transferrin: biology and use in receptor-targeted nanotherapy of gliomas." ACS omega 6.13 (2021): 8727-8733.
[3] Chasteen, N. Dennis. "Human serotransferrin: structure and function." Coordination Chemistry Reviews 22.1-2 (1977): 1-36.
[4] Kimawaha, Phongsaran, et al. "Serum α2, 6-sialylated glycoform of serotransferrin as a glycobiomarker for diagnosis and prediction of clinical severity in cholangiocarcinoma." Clinica Chimica Acta 536 (2022): 142-154.
[5] Barik, Sushanta Kumar, et al. "Identification and differential expression of serotransferrin and apolipoprotein AI in the plasma of HIV-1 patients treated with first-line antiretroviral therapy." BMC infectious diseases 20 (2020): 1-8.
[6] Lai, Ren, et al. "Transferrin is upregulated by microbes and acts as a negative regulator of immunity to induce intestinal immunotolerance." Research (2024).
[7] Zakin, Mario M. "Regulation of transferrin gene expression." The FASEB journal 6.14 (1992): 3253-3258.
[8] Lok, C. N., and T. T. Loh. "Regulation of transferrin function and expression: review and update." Neurosignals 7.3 (1998): 157-178.
[9] Ogun, Aminat S., and Adebayo Adeyinka. "Biochemistry, transferrin." StatPearls [Internet]. StatPearls Publishing, 2022.
[10] Silva, André MN, et al. "Human transferrin: An inorganic biochemistry perspective." Coordination Chemistry Reviews 449 (2021): 214186.
[11] Daniels TR, Delgado T, Helguera G, Penichet ML. The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. Clin Immunol. 2006 Nov;121(2):159-76.
[12] Candelaria, Pierre V., et al. "Antibodies targeting the transferrin receptor 1 (TfR1) as direct anti-cancer agents." Frontiers in immunology 12 (2021): 607692.
[13] Li, Jiaojiao, and Wei Zhang. "From iron chelation to overload as a therapeutic strategy to induce ferroptosis in hematologic malignancies." Hematology 27.1 (2022): 1163-1170.
[14] Zhao, Yan, Zineng Huang, and Hongling Peng. "Molecular mechanisms of ferroptosis and its roles in hematologic malignancies." Frontiers in oncology 11 (2021): 743006.
[15] R Nogueira-Librelotto, Daniele, et al. "Transferrin-conjugated nanocarriers as active-targeted drug delivery platforms for cancer therapy." Current pharmaceutical design 23.3 (2017): 454-466.
[16] Li, XueMing, et al. "Targeted delivery of doxorubicin using stealth liposomes modified with transferrin." International journal of pharmaceutics 373.1-2 (2009): 116-123.
[17] Sen, Kacoli, and Mahitosh Mandal. "Second generation liposomal cancer therapeutics: transition from laboratory to clinic." International journal of pharmaceutics 448.1 (2013): 28-43.
[18] Huang, Shan-Zhou, et al. "Targeting TF-AKT/ERK-EGFR pathway suppresses the growth of hepatocellular carcinoma." Frontiers in oncology 9 (2019): 150.
[19] Li, Lihong, et al. "Targeted delivery of doxorubicin using transferrin-conjugated carbon dots for cancer therapy." ACS Applied Bio Materials 4.9 (2021): 7280-7289.
[20] K?lbl, Alexandra C., et al. "The role of TF-and Tn-antigens in breast cancer metastasis." (2016).
[21] Zhou, Jun, et al. "A transferrin-conjugated hollow nanoplatform for redox-controlled and targeted chemotherapy of tumor with reduced inflammatory reactions." Theranostics 8.2 (2018): 518.
[22] Mahani, Mohamad, et al. "Doxorubicin delivery to breast cancer cells with transferrin-targeted carbon quantum dots: An in vitro and in silico study." Journal of Drug Delivery Science and Technology 62 (2021): 102342.
[23] Ye, Yun, Su-Liang Li, and Sheng-Yu Wang. "Construction and analysis of mRNA, miRNA, lncRNA, and TF regulatory networks reveal the key genes associated with prostate cancer." PloS one 13.8 (2018): e0198055.
[24] Al Robaian, Majed, et al. "Therapeutic efficacy of intravenously administered transferrin-conjugated dendriplexes on prostate carcinomas." Nanomedicine 9.4 (2014): 421-434.
[25] Fernandes, Mariza Aires, et al. "Transferrin-functionalized liposomes for docetaxel delivery to prostate cancer cells." Colloids and Surfaces A: Physicochemical and Engineering Aspects 611 (2021): 125806.
[26] Dufès, Christine, Majed Al Robaian, and Sukrut Somani. "Transferrin and the transferrin receptor for the targeted delivery of therapeutic agents to the brain and cancer cells." Therapeutic delivery 4.5 (2013): 629-640.
[27] Wu, Yihe, et al. "Blocking transferrin receptor inhibits the growth of lung adenocarcinoma cells in vitro." Thoracic Cancer 9.2 (2018): 253-261.
[28] Deshpande, Pranali, et al. "Transferrin and octaarginine modified dual-functional liposomes with improved cancer cell targeting and enhanced intracellular delivery for the treatment of ovarian cancer." Drug delivery 25.1 (2018): 517-532.
[29] Metzgeroth, Georgia, et al. "The soluble transferrin receptor reflects tumor load in chronic lymphocytic leukemia." (2007): 1313-1318.
[30] Kobayashi, Eiji, et al. "Biomarkers for screening, diagnosis, and monitoring of ovarian cancer." Cancer Epidemiology, Biomarkers & Prevention 21.11 (2012): 1902-1912.
[31] Ge, Pingyun, et al. "Transferrin receptors/magnetic resonance dual-targeted nanoplatform for precise chemo-photodynamic synergistic cancer therapy." Nanomedicine: Nanotechnology, Biology and Medicine 39 (2022): 102467.
[32] Liu, Xiaoli, et al. "Therapeutic applications of multifunctional nanozymes." Nanoscale 11.44 (2019): 21046-21060.
[33] Boshuizen, M., et al. "Therapeutic use of transferrin to modulate anemia and conditions of iron toxicity." Blood Reviews 31.6 (2017): 400-405.
[34] Bruhn, Kevin W., and Brad Spellberg. "Transferrin-mediated iron sequestration as a novel therapy for bacterial and fungal infections." Current opinion in microbiology 27 (2015): 57-61.